These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23132378)

  • 21. Stability, electronic and magnetic properties of embedded triangular graphene nanoflakes.
    Dai QQ; Zhu YF; Jiang Q
    Phys Chem Chem Phys; 2012 Jan; 14(3):1253-61. PubMed ID: 22134488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The electronic properties of graphene and graphene ribbons under simple shear strain.
    Sena SH; Pereira JM; Farias GA; Peeters FM; Costa Filho RN
    J Phys Condens Matter; 2012 Sep; 24(37):375301. PubMed ID: 22890024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2012 Feb; 14(6):2040-9. PubMed ID: 22234604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons.
    Veiga RG; Miwa RH; Srivastava GP
    J Chem Phys; 2008 May; 128(20):201101. PubMed ID: 18513000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable magnetic and electronic properties of armchair BeN
    Zhu M; Zhou W; Yang J; Zhou J; Li Q
    Phys Chem Chem Phys; 2023 Feb; 25(6):5029-5036. PubMed ID: 36722879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation between energy band transition and optical absorption spectrum in bilayer armchair graphene nanoribbons.
    Nguyen LT; Ngo VC; Thai TL; Phan DT; Nguyen TA; Tran VT; Vu TT; Phan TK
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering the work function of armchair graphene nanoribbons using strain and functional species: a first principles study.
    Peng X; Tang F; Copple A
    J Phys Condens Matter; 2012 Feb; 24(7):075501. PubMed ID: 22297686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spin-orbit coupling effects on electronic structures in stanene nanoribbons.
    Xiong W; Xia C; Peng Y; Du J; Wang T; Zhang J; Jia Y
    Phys Chem Chem Phys; 2016 Mar; 18(9):6534-40. PubMed ID: 26865500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons.
    Wang M; Li CM
    Nanoscale; 2011 May; 3(5):2324-8. PubMed ID: 21503364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy gaps in graphene nanoribbons.
    Son YW; Cohen ML; Louie SG
    Phys Rev Lett; 2006 Nov; 97(21):216803. PubMed ID: 17155765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exciton-dominated optical response of ultra-narrow graphene nanoribbons.
    Denk R; Hohage M; Zeppenfeld P; Cai J; Pignedoli CA; Söde H; Fasel R; Feng X; Müllen K; Wang S; Prezzi D; Ferretti A; Ruini A; Molinari E; Ruffieux P
    Nat Commun; 2014 Jul; 5():4253. PubMed ID: 25001405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electronic and optical properties of graphene nanoribbons in external fields.
    Chung HC; Chang CP; Lin CY; Lin MF
    Phys Chem Chem Phys; 2016 Mar; 18(11):7573-616. PubMed ID: 26744847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy gaps in supramolecular functionalized graphene nanoribbons.
    Nduwimana A; Wang XQ
    ACS Nano; 2009 Jul; 3(7):1995-9. PubMed ID: 19548689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkali-created rich properties in grapheme nanoribbons: Chemical bondings.
    Lin YT; Lin SY; Chiu YH; Lin MF
    Sci Rep; 2017 May; 7(1):1722. PubMed ID: 28496144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the curvature of deformed graphene nanoribbons on their electronic and adsorptive properties: theoretical investigation based on the analysis of the local stress field for an atomic grid.
    Glukhova O; Slepchenkov M
    Nanoscale; 2012 Jun; 4(11):3335-44. PubMed ID: 22543701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation effects on Landau levels in a monolayer graphene.
    Ho JH; Lai YH; Chiu YH; Lin MF
    Nanotechnology; 2008 Jan; 19(3):035712. PubMed ID: 21817597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of defects on the conductance of graphene nanoribbons.
    Gorjizadeh N; Farajian AA; Kawazoe Y
    Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.