These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23132426)

  • 1. Limits of metastability in amorphous ices: the neutron scattering Debye-Waller factor.
    Amann-Winkel K; Löw F; Handle PH; Knoll W; Peters J; Geil B; Fujara F; Loerting T
    Phys Chem Chem Phys; 2012 Dec; 14(47):16386-91. PubMed ID: 23132426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limits of metastability in amorphous ices: 2H-NMR relaxation.
    Löw F; Amann-Winkel K; Geil B; Loerting T; Wittich C; Fujara F
    Phys Chem Chem Phys; 2013 Jan; 15(2):576-80. PubMed ID: 23183587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversibility and isotope effect of the calorimetric glass --> liquid transition of low-density amorphous ice.
    Elsaesser MS; Winkel K; Mayer E; Loerting T
    Phys Chem Chem Phys; 2010 Jan; 12(3):708-12. PubMed ID: 20066356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.
    Löw F; Amann-Winkel K; Loerting T; Fujara F; Geil B
    Phys Chem Chem Phys; 2013 Jun; 15(23):9308-14. PubMed ID: 23660938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation and growth of crystalline ices from amorphous ices.
    Tonauer CM; Fidler LR; Giebelmann J; Yamashita K; Loerting T
    J Chem Phys; 2023 Apr; 158(14):141001. PubMed ID: 37061482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation effects in low density amorphous ice: two distinct structural states observed by neutron diffraction.
    Winkel K; Bowron DT; Loerting T; Mayer E; Finney JL
    J Chem Phys; 2009 May; 130(20):204502. PubMed ID: 19485452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryoflotation: densities of amorphous and crystalline ices.
    Loerting T; Bauer M; Kohl I; Watschinger K; Winkel K; Mayer E
    J Phys Chem B; 2011 Dec; 115(48):14167-75. PubMed ID: 21879742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point.
    Mishima O; Suzuki Y
    Nature; 2002 Oct; 419(6907):599-603. PubMed ID: 12374974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-induced transformations in computer simulations of glassy water.
    Chiu J; Starr FW; Giovambattista N
    J Chem Phys; 2013 Nov; 139(18):184504. PubMed ID: 24320281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The glass transition behaviors of low-density amorphous ice films with different thicknesses.
    He C; Zhang W; Li Y
    J Chem Phys; 2010 Nov; 133(20):204504. PubMed ID: 21133443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-density amorphous ice: nucleation of nanosized low-density amorphous ice.
    Tonauer CM; Seidl-Nigsch M; Loerting T
    J Phys Condens Matter; 2018 Jan; 30(3):034002. PubMed ID: 29189205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isobaric annealing of high-density amorphous ice between 0.3 and 1.9 GPa: in situ density values and structural changes.
    Salzmann CG; Loerting T; Klotz S; Mirwald PW; Hallbrucker A; Mayer E
    Phys Chem Chem Phys; 2006 Jan; 8(3):386-97. PubMed ID: 16482282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.
    Guillot B; Guissani Y
    J Chem Phys; 2004 Mar; 120(9):4366-82. PubMed ID: 15268606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How many amorphous ices are there?
    Loerting T; Winkel K; Seidl M; Bauer M; Mitterdorfer C; Handle PH; Salzmann CG; Mayer E; Finney JL; Bowron DT
    Phys Chem Chem Phys; 2011 May; 13(19):8783-94. PubMed ID: 21431195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Reorientation Dynamics Govern the Glass Transitions of the Amorphous Ices.
    Shephard JJ; Salzmann CG
    J Phys Chem Lett; 2016 Jun; 7(12):2281-5. PubMed ID: 27243277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of molecular mobility on nano-second time scales in amorphous ice phases.
    Koza MM; Geil B; Schober H; Natali F
    Phys Chem Chem Phys; 2005 Apr; 7(7):1423-31. PubMed ID: 19787964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The local and intermediate range structures of the five amorphous ices at 80 K and ambient pressure: a Faber-Ziman and Bhatia-Thornton analysis.
    Bowron DT; Finney JL; Hallbrucker A; Kohl I; Loerting T; Mayer E; Soper AK
    J Chem Phys; 2006 Nov; 125(19):194502. PubMed ID: 17129118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing.
    Kim CU; Tate MW; Gruner SM
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11765-70. PubMed ID: 26351671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal transport coefficients for liquid and glassy water computed from a harmonic aqueous glass.
    Yu X; Leitner DM
    J Chem Phys; 2005 Sep; 123(10):104503. PubMed ID: 16178606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.