BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23132567)

  • 1. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of Saccharomyces cerevisiae.
    Matsuda F; Kondo T; Ida K; Tezuka H; Ishii J; Kondo A
    Biosci Biotechnol Biochem; 2012; 76(11):2139-41. PubMed ID: 23132567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.
    Lee WH; Seo SO; Bae YH; Nan H; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2012 Nov; 35(9):1467-75. PubMed ID: 22543927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis.
    Hammer SK; Avalos JL
    Metab Eng; 2017 Nov; 44():302-312. PubMed ID: 29037781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7591-8. PubMed ID: 27225475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae.
    Lee KM; Kim SK; Lee YG; Park KH; Seo JH
    Bioresour Technol; 2018 Nov; 268():271-277. PubMed ID: 30081287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance.
    Matsuda F; Ishii J; Kondo T; Ida K; Tezuka H; Kondo A
    Microb Cell Fact; 2013 Dec; 12():119. PubMed ID: 24305546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in Saccharomyces cerevisiae.
    Yuan J; Mishra P; Ching CB
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):107-117. PubMed ID: 27826727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.
    Park SH; Kim S; Hahn JS
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):9139-47. PubMed ID: 25280745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner-Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production.
    Morita K; Nomura Y; Ishii J; Matsuda F; Kondo A; Shimizu H
    J Biosci Bioeng; 2017 Sep; 124(3):263-270. PubMed ID: 28539187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae.
    Generoso WC; Brinek M; Dietz H; Oreb M; Boles E
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28505306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in
    Hammer SK; Zhang Y; Avalos JL
    ACS Synth Biol; 2020 Mar; 9(3):546-555. PubMed ID: 32049515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae.
    Ida K; Ishii J; Matsuda F; Kondo T; Kondo A
    Microb Cell Fact; 2015 Apr; 14():62. PubMed ID: 25925006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast.
    Kuroda K; Hammer SK; Watanabe Y; Montaño López J; Fink GR; Stephanopoulos G; Ueda M; Avalos JL
    Cell Syst; 2019 Dec; 9(6):534-547.e5. PubMed ID: 31734159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers.
    Generoso WC; Schadeweg V; Oreb M; Boles E
    Curr Opin Biotechnol; 2015 Jun; 33():1-7. PubMed ID: 25286420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production.
    Yuan J; Chen X; Mishra P; Ching CB
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):465-474. PubMed ID: 27847988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.
    Avalos JL; Fink GR; Stephanopoulos G
    Nat Biotechnol; 2013 Apr; 31(4):335-41. PubMed ID: 23417095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae.
    Brat D; Boles E
    FEMS Yeast Res; 2013 Mar; 13(2):241-4. PubMed ID: 23279585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving isobutanol tolerance and titers through EMS mutagenesis in Saccharomyces cerevisiae.
    Su Y; Shao W; Zhang A; Zhang W
    FEMS Yeast Res; 2021 Mar; 21(2):. PubMed ID: 33620449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing.
    Omura F
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):503-13. PubMed ID: 18193418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.