These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23132646)

  • 1. Gain control in the sonar of odontocetes.
    Ya Supin A; Nachtigall PE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Jun; 199(6):471-8. PubMed ID: 23132646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evoked-potential recovery during double click stimulation in a beluga whale: implications for biosonar gain control.
    Supin AY; Popov VV
    J Acoust Soc Am; 2015 May; 137(5):2512-21. PubMed ID: 25994684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of emitted sonar pulses and simulated echoes in a false killer whale: an evoked-potential study.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2011 Sep; 130(3):1711-20. PubMed ID: 21895108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forward-masking based gain control in odontocete biosonar: an evoked-potential study.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2009 Apr; 125(4):2432-42. PubMed ID: 19354417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus.
    Macías S; Luo J; Moss CF
    J Neurophysiol; 2018 Sep; 120(3):1323-1339. PubMed ID: 29924708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory evoked potentials in a bottlenose dolphin during moderate-range echolocation tasks.
    Finneran JJ; Mulsow J; Houser DS
    J Acoust Soc Am; 2013 Dec; 134(6):4532. PubMed ID: 25669263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forward masking as a mechanism of automatic gain control in odontocete biosonar: a psychophysical study.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2008 Jul; 124(1):648-56. PubMed ID: 18647006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus.
    Simmons JA; Moffat AJ; Masters WM
    J Acoust Soc Am; 1992 Feb; 91(2):1150-63. PubMed ID: 1556314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neglect of bandwidth of Odontocetes echo location clicks biases propagation loss and single hydrophone population estimates.
    Ainslie MA
    J Acoust Soc Am; 2013 Nov; 134(5):3506-12. PubMed ID: 24180761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system.
    Linnenschmidt M; Beedholm K; Wahlberg M; Højer-Kristensen J; Nachtigall PE
    Proc Biol Sci; 2012 Jun; 279(1736):2237-45. PubMed ID: 22279169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation.
    Kick SA; Simmons JA
    J Neurosci; 1984 Nov; 4(11):2725-37. PubMed ID: 6502201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target distance-dependent variation of hearing sensitivity during echolocation in a false killer whale.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2010 Jun; 127(6):3830-6. PubMed ID: 20550281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural representation of the self-heard biosonar click in bottlenose dolphins (Tursiops truncatus).
    Finneran JJ; Mulsow J; Houser DS; Schlundt CE
    J Acoust Soc Am; 2017 May; 141(5):3379. PubMed ID: 28599518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How frequency hopping suppresses pulse-echo ambiguity in bat biosonar.
    Ming C; Bates ME; Simmons JA
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17288-17295. PubMed ID: 32632013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evoked-potential recovery during double click stimulation in a whale: a possibility of biosonar automatic gain control.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2007 Jan; 121(1):618-25. PubMed ID: 17297815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short delays and low pulse amplitudes produce widespread activation in the target-distance processing area of auditory cortex of the mustached bat.
    Macías S; Hechavarría JC
    J Acoust Soc Am; 2016 Aug; 140(2):917. PubMed ID: 27586724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.
    Supin AY; Nachtigall PE; Breese M
    J Acoust Soc Am; 2012 Sep; 132(3):1811-9. PubMed ID: 22978908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
    Luo J; Moss CF
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10978-10983. PubMed ID: 28973851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise interference with echo delay discrimination in bat biosonar.
    Simmons JA
    J Acoust Soc Am; 2017 Nov; 142(5):2942. PubMed ID: 29195421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
    Greiter W; Firzlaff U
    J Neurophysiol; 2017 Jun; 117(6):2113-2124. PubMed ID: 28275060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.