These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 23132940)

  • 1. Fluctuation broadening in carbon nanotube resonators.
    Barnard AW; Sazonova V; van der Zande AM; McEuen PL
    Proc Natl Acad Sci U S A; 2012 Nov; 109(47):19093-6. PubMed ID: 23132940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators.
    Rechnitz S; Tabachnik T; Shlafman M; Shlafman S; Yaish YE
    Nat Commun; 2022 Oct; 13(1):5900. PubMed ID: 36202803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotubes as ultrahigh quality factor mechanical resonators.
    Hüttel AK; Steele GA; Witkamp B; Poot M; Kouwenhoven LP; van der Zant HS
    Nano Lett; 2009 Jul; 9(7):2547-52. PubMed ID: 19492820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanoelectromechanical systems as stochastic-frequency oscillators.
    Miao T; Yeom S; Wang P; Standley B; Bockrath M
    Nano Lett; 2014 Jun; 14(6):2982-7. PubMed ID: 24742005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clamping instability and van der Waals forces in carbon nanotube mechanical resonators.
    Aykol M; Hou B; Dhall R; Chang SW; Branham W; Qiu J; Cronin SB
    Nano Lett; 2014 May; 14(5):2426-30. PubMed ID: 24758201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symmetry breaking in a mechanical resonator made from a carbon nanotube.
    Eichler A; Moser J; Dykman MI; Bachtold A
    Nat Commun; 2013; 4():2843. PubMed ID: 24270088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DC Signature of Snap-through Bistability in Carbon Nanotube Mechanical Resonators.
    Rechnitz S; Tabachnik T; Shlafman S; Shlafman M; Yaish YE
    Nano Lett; 2022 Sep; 22(18):7304-7310. PubMed ID: 36069744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling carbon nanotube mechanics to a superconducting circuit.
    Schneider BH; Etaki S; van der Zant HS; Steele GA
    Sci Rep; 2012; 2():599. PubMed ID: 22953042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum capacitance mediated carbon nanotube optomechanics.
    Blien S; Steger P; Hüttner N; Graaf R; Hüttel AK
    Nat Commun; 2020 Apr; 11(1):1636. PubMed ID: 32242140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators.
    Wu CC; Zhong Z
    Nano Lett; 2011 Apr; 11(4):1448-51. PubMed ID: 21428322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations.
    Nocera A; Perroni CA; Ramaglia VM; Cataudella V
    Beilstein J Nanotechnol; 2016; 7():439-64. PubMed ID: 27335736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic monolayer deposition on the surface of nanotube mechanical resonators.
    Tavernarakis A; Chaste J; Eichler A; Ceballos G; Gordillo MC; Boronat J; Bachtold A
    Phys Rev Lett; 2014 May; 112(19):196103. PubMed ID: 24877950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotube mechanical resonators with quality factors of up to 5 million.
    Moser J; Eichler A; Güttinger J; Dykman MI; Bachtold A
    Nat Nanotechnol; 2014 Dec; 9(12):1007-11. PubMed ID: 25344688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transitions of adsorbed atoms on the surface of a carbon nanotube.
    Wang Z; Wei J; Morse P; Dash JG; Vilches OE; Cobden DH
    Science; 2010 Jan; 327(5965):552-5. PubMed ID: 20110499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube.
    Woo JH; Choi E; Kang B; Kim ES; Kim J; Lee YU; Hong TY; Kim JH; Lee I; Lee YH; Wu JW
    Opt Express; 2012 Jul; 20(14):15440-51. PubMed ID: 22772240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
    de Bonis SL; Urgell C; Yang W; Samanta C; Noury A; Vergara-Cruz J; Dong Q; Jin Y; Bachtold A
    Nano Lett; 2018 Aug; 18(8):5324-5328. PubMed ID: 30062893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric strong mode-coupling in carbon nanotube mechanical resonators.
    Li SX; Zhu D; Wang XH; Wang JT; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nanoscale; 2016 Aug; 8(31):14809-13. PubMed ID: 27447924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Buckling transition of a semiflexible filament in extensional flow.
    Manikantan H; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):041002. PubMed ID: 26565158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled whispering gallery mode resonators in the Terahertz frequency range.
    Preu S; Schwefel HG; Malzer S; Döhler GH; Wang LJ; Hanson M; Zimmerman JD; Gossard AC
    Opt Express; 2008 May; 16(10):7336-43. PubMed ID: 18545439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-scale mass sensing using carbon nanotube resonators.
    Chiu HY; Hung P; Postma HW; Bockrath M
    Nano Lett; 2008 Dec; 8(12):4342-6. PubMed ID: 19053791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.