BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23133312)

  • 1. Production of adenosine by ectonucleotidases: a key factor in tumor immunoescape.
    Ghiringhelli F; Bruchard M; Chalmin F; Rébé C
    J Biomed Biotechnol; 2012; 2012():473712. PubMed ID: 23133312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting adenosine and regulatory T cells in cancer immunotherapy.
    Churov A; Zhulai G
    Hum Immunol; 2021 Apr; 82(4):270-278. PubMed ID: 33610376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Metabolism of Extracellular Nucleotides via Inhibition of Ectonucleotidases CD73 and CD39.
    Jeffrey JL; Lawson KV; Powers JP
    J Med Chem; 2020 Nov; 63(22):13444-13465. PubMed ID: 32786396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Throughput Screening Assays for Cancer Immunotherapy Targets: Ectonucleotidases CD39 and CD73.
    Kumar M; Lowery R; Kumar V
    SLAS Discov; 2020 Mar; 25(3):320-326. PubMed ID: 31868071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD73 and CD39 ectonucleotidases in T cell differentiation: Beyond immunosuppression.
    Bono MR; Fernández D; Flores-Santibáñez F; Rosemblatt M; Sauma D
    FEBS Lett; 2015 Nov; 589(22):3454-60. PubMed ID: 26226423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.
    Allard B; Pommey S; Smyth MJ; Stagg J
    Clin Cancer Res; 2013 Oct; 19(20):5626-35. PubMed ID: 23983257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates to hypoxia and immunosuppressive pathways.
    Giatromanolaki A; Kouroupi M; Pouliliou S; Mitrakas A; Hasan F; Pappa A; Koukourakis MI
    Life Sci; 2020 Oct; 259():118389. PubMed ID: 32898522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of Potent and Selective Methylenephosphonic Acid CD73 Inhibitors.
    Sharif EU; Kalisiak J; Lawson KV; Miles DH; Newcomb E; Lindsey EA; Rosen BR; Debien LPP; Chen A; Zhao X; Young SW; Walker NP; Sträter N; Scaletti ER; Jin L; Xu G; Leleti MR; Powers JP
    J Med Chem; 2021 Jan; 64(1):845-860. PubMed ID: 33399453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting ectonucleotidases to treat inflammation and halt cancer development in the gut.
    Longhi MS; Feng L; Robson SC
    Biochem Pharmacol; 2021 May; 187():114417. PubMed ID: 33460629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of CD73 as a target for cancer immunotherapy.
    Jadidi-Niaragh F
    Immunotherapy; 2019 Nov; 11(16):1353-1355. PubMed ID: 31578906
    [No Abstract]   [Full Text] [Related]  

  • 11. [A new generation of immunotherapies targeting the CD39/CD73/adenosine pathway to promote the anti-tumor immune response].
    Gros L; Paturel C; Perrot I; Bensussan A; Eliaou JF; Bastid J; Bonnefoy N
    Med Sci (Paris); 2020 Feb; 36(2):112-115. PubMed ID: 32129745
    [No Abstract]   [Full Text] [Related]  

  • 12. CD73-generated adenosine: orchestrating the tumor-stroma interplay to promote cancer growth.
    Allard B; Turcotte M; Stagg J
    J Biomed Biotechnol; 2012; 2012():485156. PubMed ID: 23125525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy.
    de Leve S; Wirsdörfer F; Jendrossek V
    Front Immunol; 2019; 10():698. PubMed ID: 31024543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD39 - A bright target for cancer immunotherapy.
    Guo S; Han F; Zhu W
    Biomed Pharmacother; 2022 Jul; 151():113066. PubMed ID: 35550530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD73 and adenosine generation in the creation of regulatory microenvironments.
    Regateiro FS; Cobbold SP; Waldmann H
    Clin Exp Immunol; 2013 Jan; 171(1):1-7. PubMed ID: 23199317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of ATP to adenosine by CD39 and CD73 in multiple myeloma can be successfully targeted together with adenosine receptor A2A blockade.
    Yang R; Elsaadi S; Misund K; Abdollahi P; Vandsemb EN; Moen SH; Kusnierczyk A; Slupphaug G; Standal T; Waage A; Slørdahl TS; Rø TB; Rustad E; Sundan A; Hay C; Cooper Z; Schuller AG; Woessner R; Borodovsky A; Menu E; Børset M; Sponaas AM
    J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32409420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disarming suppressor cells to improve immunotherapy.
    Whiteside TL
    Cancer Immunol Immunother; 2012 Feb; 61(2):283-288. PubMed ID: 22146892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer.
    Mandapathil M; Szczepanski MJ; Szajnik M; Ren J; Lenzner DE; Jackson EK; Gorelik E; Lang S; Johnson JT; Whiteside TL
    Clin Cancer Res; 2009 Oct; 15(20):6348-57. PubMed ID: 19825957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells.
    Mandapathil M; Szczepanski MJ; Szajnik M; Ren J; Jackson EK; Johnson JT; Gorelik E; Lang S; Whiteside TL
    J Biol Chem; 2010 Sep; 285(36):27571-80. PubMed ID: 20558731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the CD73-adenosine axis in immuno-oncology.
    Allard D; Chrobak P; Allard B; Messaoudi N; Stagg J
    Immunol Lett; 2019 Jan; 205():31-39. PubMed ID: 29758241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.