These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23133353)

  • 1. Evolution of associative learning in chemical networks.
    McGregor S; Vasas V; Husbands P; Fernando C
    PLoS Comput Biol; 2012; 8(11):e1002739. PubMed ID: 23133353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational optimization of associative learning experiments.
    Melinscak F; Bach DR
    PLoS Comput Biol; 2020 Jan; 16(1):e1007593. PubMed ID: 31905214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H-CORE: enabling genome-scale Bayesian analysis of biological systems without prior knowledge.
    Jung S; Lee KH; Lee D
    Biosystems; 2007; 90(1):197-210. PubMed ID: 17005318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Unifying Probabilistic View of Associative Learning.
    Gershman SJ
    PLoS Comput Biol; 2015 Nov; 11(11):e1004567. PubMed ID: 26535896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining regulatory networks through phylogenetic transfer of information.
    Zhang X; Moret BM
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1032-45. PubMed ID: 22547434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associative learning in biochemical networks.
    Gandhi N; Ashkenasy G; Tannenbaum E
    J Theor Biol; 2007 Nov; 249(1):58-66. PubMed ID: 17706681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonhomogeneous dynamic Bayesian networks in systems biology.
    Lèbre S; Dondelinger F; Husmeier D
    Methods Mol Biol; 2012; 802():199-213. PubMed ID: 22130882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks.
    Peña JM; Lozano JA; Larrañaga P
    Evol Comput; 2005; 13(1):43-66. PubMed ID: 15901426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning robust cell signalling models from high throughput proteomic data.
    Koch M; Broom BM; Subramanian D
    Int J Bioinform Res Appl; 2009; 5(3):241-53. PubMed ID: 19525198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From heterogeneous healthcare data to disease-specific biomarker networks: A hierarchical Bayesian network approach.
    Becker AK; Dörr M; Felix SB; Frost F; Grabe HJ; Lerch MM; Nauck M; Völker U; Völzke H; Kaderali L
    PLoS Comput Biol; 2021 Feb; 17(2):e1008735. PubMed ID: 33577591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotype networks, innovation, and robustness in sulfur metabolism.
    Matias Rodrigues JF; Wagner A
    BMC Syst Biol; 2011 Mar; 5():39. PubMed ID: 21385333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic associative learning suffices for learning the temporal structure of multiple sequences.
    Martinez RH; Lansner A; Herman P
    PLoS One; 2019; 14(8):e0220161. PubMed ID: 31369571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A primer on learning in Bayesian networks for computational biology.
    Needham CJ; Bradford JR; Bulpitt AJ; Westhead DR
    PLoS Comput Biol; 2007 Aug; 3(8):e129. PubMed ID: 17784779
    [No Abstract]   [Full Text] [Related]  

  • 16. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks.
    Suter P; Kuipers J; Beerenwinkel N
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35679575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preliminary studies on the in silico evolution of biochemical networks.
    Deckard A; Sauro HM
    Chembiochem; 2004 Oct; 5(10):1423-31. PubMed ID: 15457528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks.
    Ali Al-Radhawi M; Angeli D; Sontag ED
    PLoS Comput Biol; 2020 Feb; 16(2):e1007681. PubMed ID: 32092050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical evaluation of scoring functions for Bayesian network model selection.
    Liu Z; Malone B; Yuan C
    BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S14. PubMed ID: 23046392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.