These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 2313343)
1. Effects of midbrain and medullary stimulation on spinomesencephalic tract cells in the cat. Yezierski RP J Neurophysiol; 1990 Feb; 63(2):240-55. PubMed ID: 2313343 [TBL] [Abstract][Full Text] [Related]
2. Response and receptive-field properties of spinomesencephalic tract cells in the cat. Yezierski RP; Schwartz RH J Neurophysiol; 1986 Jan; 55(1):76-96. PubMed ID: 3950687 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of spinal nociceptive information by stimulation in midbrain of the cat is blocked by lidocaine microinjected in nucleus raphe magnus and medullary reticular formation. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1983 Dec; 50(6):1446-59. PubMed ID: 6663337 [TBL] [Abstract][Full Text] [Related]
4. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. Abols IA; Basbaum AI J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930 [TBL] [Abstract][Full Text] [Related]
5. Primate raphe- and reticulospinal neurons: effects of stimulation in periaqueductal gray or VPLc thalamic nucleus. Willis WD; Gerhart KD; Willcockson WS; Yezierski RP; Wilcox TK; Cargill CL J Neurophysiol; 1984 Mar; 51(3):467-80. PubMed ID: 6422009 [TBL] [Abstract][Full Text] [Related]
6. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336 [TBL] [Abstract][Full Text] [Related]
7. Characterization of descending facilitation and inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Zhuo M; Gebhart GF J Neurophysiol; 1992 Jun; 67(6):1599-614. PubMed ID: 1352804 [TBL] [Abstract][Full Text] [Related]
8. Ascending and descending projections to medullary reticular formation sites which activate deep lumbar back muscles in the rat. Robbins A; Schwartz-Giblin S; Pfaff DW Exp Brain Res; 1990; 80(3):463-74. PubMed ID: 2387348 [TBL] [Abstract][Full Text] [Related]
9. Functional properties of spinomesencephalic tract (SMT) cells in the upper cervical spinal cord of the cat. Yezierski RP; Broton JG Pain; 1991 May; 45(2):187-196. PubMed ID: 1876427 [TBL] [Abstract][Full Text] [Related]
10. Effects of neonatal capsaicin treatment on descending modulation of spinal nociception from the rostral, medial medulla in adult rat. Zhuo M; Gebhart GF Brain Res; 1994 May; 645(1-2):164-78. PubMed ID: 8062079 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. Gerhart KD; Yezierski RP; Wilcox TK; Willis WD J Neurophysiol; 1984 Mar; 51(3):450-66. PubMed ID: 6699675 [TBL] [Abstract][Full Text] [Related]
12. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. Malick A; Strassman RM; Burstein R J Neurophysiol; 2000 Oct; 84(4):2078-112. PubMed ID: 11024099 [TBL] [Abstract][Full Text] [Related]
13. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla. Aimone LD; Gebhart GF J Neurosci; 1986 Jun; 6(6):1803-13. PubMed ID: 2872283 [TBL] [Abstract][Full Text] [Related]
14. Viscerosomatic neurons in the lower thoracic spinal cord of the cat: excitations and inhibitions evoked by splanchnic and somatic nerve volleys and by stimulation of brain stem nuclei. Tattersall JE; Cervero F; Lumb BM J Neurophysiol; 1986 Nov; 56(5):1411-23. PubMed ID: 3794775 [TBL] [Abstract][Full Text] [Related]
15. Renal and somatic input to spinal neurons antidromically activated from the ventrolateral medulla. Ammons WS J Neurophysiol; 1988 Dec; 60(6):1967-81. PubMed ID: 2466963 [TBL] [Abstract][Full Text] [Related]
16. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1984 Jan; 51(1):75-89. PubMed ID: 6693935 [TBL] [Abstract][Full Text] [Related]
17. Electrophysiological evidence that spinomesencephalic neurons in the cat may be excited via spinocervical tract collaterals. Djouhri L; Meng Z; Brown AG; Short AD Exp Brain Res; 1997 Oct; 116(3):477-84. PubMed ID: 9372296 [TBL] [Abstract][Full Text] [Related]
18. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. Sandkühler J; Fu QG; Zimmermann M J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871 [TBL] [Abstract][Full Text] [Related]
19. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. Fields HL; Malick A; Burstein R J Neurophysiol; 1995 Oct; 74(4):1742-59. PubMed ID: 8989409 [TBL] [Abstract][Full Text] [Related]
20. Spinohypothalamic tract neurons in the cervical enlargement of rats: locations of antidromically identified ascending axons and their collateral branches in the contralateral brain. Kostarczyk E; Zhang X; Giesler GJ J Neurophysiol; 1997 Jan; 77(1):435-51. PubMed ID: 9120585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]