BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23133574)

  • 1. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.
    Adamberg K; Seiman A; Vilu R
    PLoS One; 2012; 7(10):e48223. PubMed ID: 23133574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates.
    Lahtvee PJ; Adamberg K; Arike L; Nahku R; Aller K; Vilu R
    Microb Cell Fact; 2011 Feb; 10():12. PubMed ID: 21349178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.
    Koebmann B; Blank LM; Solem C; Petranovic D; Nielsen LK; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):25-33. PubMed ID: 17824842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein turnover forms one of the highest maintenance costs in Lactococcus lactis.
    Lahtvee PJ; Seiman A; Arike L; Adamberg K; Vilu R
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1501-1512. PubMed ID: 24739216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional, translational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures.
    Even S; Lindley ND; Cocaign-Bousquet M
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1935-1944. PubMed ID: 12855744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoglycerate mutase is a highly efficient enzyme without flux control in Lactococcus lactis.
    Solem C; Petranovic D; Koebmann B; Mijakovic I; Jensen PR
    J Mol Microbiol Biotechnol; 2010; 18(3):174-80. PubMed ID: 20530968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways.
    Novák L; Loubiere P
    J Bacteriol; 2000 Feb; 182(4):1136-43. PubMed ID: 10648541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures.
    Johanson A; Goel A; Olsson L; Franzén CJ
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis.
    Koebmann BJ; Solem C; Pedersen MB; Nilsson D; Jensen PR
    Appl Environ Microbiol; 2002 Sep; 68(9):4274-82. PubMed ID: 12200276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutritional requirements and media development for Lactococcus lactis IL1403.
    Aller K; Adamberg K; Timarova V; Seiman A; Feštšenko D; Vilu R
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5871-81. PubMed ID: 24626960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of Lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin.
    Lan CQ; Oddone G; Mills DA; Block DE
    Biotechnol Bioeng; 2006 Dec; 95(6):1070-80. PubMed ID: 16807924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose.
    Solem C; Koebmann B; Yang F; Jensen PR
    J Bacteriol; 2007 Sep; 189(18):6727-30. PubMed ID: 17616595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system.
    Vido K; Le Bars D; Mistou MY; Anglade P; Gruss A; Gaudu P
    J Bacteriol; 2004 Mar; 186(6):1648-57. PubMed ID: 14996795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information.
    Dressaire C; Redon E; Gitton C; Loubière P; Monnet V; Cocaign-Bousquet M
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S18. PubMed ID: 21995707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: a Transcriptomic Approach.
    Wu H; Liu J; Miao S; Zhao Y; Zhu H; Qiao M; Saris PEJ; Qiao J
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29305506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and Energetics of Lactococcus lactis during Growth in Complex or Synthetic Media.
    Novak L; Cocaign-Bousquet M; Lindley ND; Loubiere P
    Appl Environ Microbiol; 1997 Jul; 63(7):2665-70. PubMed ID: 16535643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of control of glycolysis in Lactococcus lactis.
    Koebmann BJ; Andersen HW; Solem C; Jensen PR
    Antonie Van Leeuwenhoek; 2002 Aug; 82(1-4):237-48. PubMed ID: 12369190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymology of the pathway for ATP production by arginine breakdown.
    Pols T; Singh S; Deelman-Driessen C; Gaastra BF; Poolman B
    FEBS J; 2021 Jan; 288(1):293-309. PubMed ID: 32306469
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Azizan KA; Ressom HW; Mendoza ER; Baharum SN
    PeerJ; 2017; 5():e3451. PubMed ID: 28695065
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.