BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23133621)

  • 1. The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress.
    Karali D; Oxley D; Runions J; Ktistakis N; Farmaki T
    PLoS One; 2012; 7(11):e48241. PubMed ID: 23133621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography.
    Oxley D; Ktistakis N; Farmaki T
    J Proteomics; 2013 Oct; 91():580-94. PubMed ID: 24007659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90.
    Aviezer-Hagai K; Skovorodnikova J; Galigniana M; Farchi-Pisanty O; Maayan E; Bocovza S; Efrat Y; von Koskull-Döring P; Ohad N; Breiman A
    Plant Mol Biol; 2007 Jan; 63(2):237-55. PubMed ID: 17080288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs.
    Meiri D; Breiman A
    Plant J; 2009 Aug; 59(3):387-99. PubMed ID: 19366428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1.
    Thirumalaikumar VP; Gorka M; Schulz K; Masclaux-Daubresse C; Sampathkumar A; Skirycz A; Vierstra RD; Balazadeh S
    Autophagy; 2021 Sep; 17(9):2184-2199. PubMed ID: 32967551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance.
    Meiri D; Tazat K; Cohen-Peer R; Farchi-Pisanty O; Aviezer-Hagai K; Avni A; Breiman A
    Plant Mol Biol; 2010 Jan; 72(1-2):191-203. PubMed ID: 19876748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana.
    Wada Y; Kusano H; Tsuge T; Aoyama T
    Plant J; 2015 Feb; 81(3):426-37. PubMed ID: 25477067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19.
    Geisler M; Kolukisaoglu HU; Bouchard R; Billion K; Berger J; Saal B; Frangne N; Koncz-Kalman Z; Koncz C; Dudler R; Blakeslee JJ; Murphy AS; Martinoia E; Schulz B
    Mol Biol Cell; 2003 Oct; 14(10):4238-49. PubMed ID: 14517332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel structure of a high molecular weight FK506 binding protein from Arabidopsis thaliana.
    Vucich VA; Gasser CS
    Mol Gen Genet; 1996 Oct; 252(5):510-7. PubMed ID: 8914512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K7, PIP5K8, and PIP5K9 are redundantly involved in root growth adaptation to osmotic stress.
    Kuroda R; Kato M; Tsuge T; Aoyama T
    Plant J; 2021 May; 106(4):913-927. PubMed ID: 33606325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel-type phosphatidylinositol phosphate-interactive, Ca-binding protein PCaP1 in Arabidopsis thaliana: stable association with plasma membrane and partial involvement in stomata closure.
    Nagata C; Miwa C; Tanaka N; Kato M; Suito M; Tsuchihira A; Sato Y; Segami S; Maeshima M
    J Plant Res; 2016 May; 129(3):539-50. PubMed ID: 26979064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate.
    Arpat AB; Magliano P; Wege S; Rouached H; Stefanovic A; Poirier Y
    Plant J; 2012 Aug; 71(3):479-91. PubMed ID: 22449068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LPIAT, a
    Coulon D; Faure L; Grison M; Pascal S; Wattelet-Boyer V; Clark J; Guedard ML; Testet E; Bessoule JJ
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121266
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of phosphatidylinositol 3,5-bisphosphate production has pleiotropic effects on various membrane trafficking routes in Arabidopsis.
    Hirano T; Munnik T; Sato MH
    Plant Cell Physiol; 2017 Jan; 58(1):120-129. PubMed ID: 27803131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate-Dependent Root System Architecture Responses to Salt Stress.
    Kawa D; Julkowska MM; Sommerfeld HM; Ter Horst A; Haring MA; Testerink C
    Plant Physiol; 2016 Oct; 172(2):690-706. PubMed ID: 27208277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis PCaP2 modulates the phosphatidylinositol 4,5-bisphosphate signal on the plasma membrane and attenuates root hair elongation.
    Kato M; Tsuge T; Maeshima M; Aoyama T
    Plant J; 2019 Aug; 99(4):610-625. PubMed ID: 30604455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome Analysis of the ROF-FKBP Mutants Reveals Functional Relations among Heat Stress Responses, Plant Development, and Protein Quality Control during Heat Acclimation in
    Lefa P; Samiotaki M; Farmaki T
    ACS Omega; 2024 Jan; 9(2):2391-2408. PubMed ID: 38250364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana.
    Stenzel I; Ischebeck T; König S; Hołubowska A; Sporysz M; Hause B; Heilmann I
    Plant Cell; 2008 Jan; 20(1):124-41. PubMed ID: 18178770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis MYB-Related HHO2 Exerts a Regulatory Influence on a Subset of Root Traits and Genes Governing Phosphate Homeostasis.
    Nagarajan VK; Satheesh V; Poling MD; Raghothama KG; Jain A
    Plant Cell Physiol; 2016 Jun; 57(6):1142-52. PubMed ID: 27016098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits.
    Munné-Bosch S; Simancas B; Müller M
    J Plant Physiol; 2018 Jul; 226():114-122. PubMed ID: 29758376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.