BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23133661)

  • 1. Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry.
    Cuesta-Geijo MA; Galindo I; Hernáez B; Quetglas JI; Dalmau-Mena I; Alonso C
    PLoS One; 2012; 7(11):e48853. PubMed ID: 23133661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the role of endosomal proteins for African swine fever virus infection.
    Cuesta-Geijo MÁ; García-Dorival I; Del Puerto A; Urquiza J; Galindo I; Barrado-Gil L; Lasala F; Cayuela A; Sorzano COS; Gil C; Delgado R; Alonso C
    PLoS Pathog; 2022 Jan; 18(1):e1009784. PubMed ID: 35081156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.
    Hernáez B; Guerra M; Salas ML; Andrés G
    PLoS Pathog; 2016 Apr; 12(4):e1005595. PubMed ID: 27110717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol Flux Is Required for Endosomal Progression of African Swine Fever Virions during the Initial Establishment of Infection.
    Cuesta-Geijo MÁ; Chiappi M; Galindo I; Barrado-Gil L; Muñoz-Moreno R; Carrascosa JL; Alonso C
    J Virol; 2016 Feb; 90(3):1534-43. PubMed ID: 26608317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.
    Cuesta-Geijo MÁ; Barrado-Gil L; Galindo I; Muñoz-Moreno R; Alonso C
    Viruses; 2017 Jun; 9(6):. PubMed ID: 28587154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entry of Classical Swine Fever Virus into PK-15 Cells via a pH-, Dynamin-, and Cholesterol-Dependent, Clathrin-Mediated Endocytic Pathway That Requires Rab5 and Rab7.
    Shi BJ; Liu CC; Zhou J; Wang SQ; Gao ZC; Zhang XM; Zhou B; Chen PY
    J Virol; 2016 Oct; 90(20):9194-208. PubMed ID: 27489278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rab5, Rab7, and Rab11 Are Required for Caveola-Dependent Endocytosis of Classical Swine Fever Virus in Porcine Alveolar Macrophages.
    Zhang YN; Liu YY; Xiao FC; Liu CC; Liang XD; Chen J; Zhou J; Baloch AS; Kan L; Zhou B; Qiu HJ
    J Virol; 2018 Aug; 92(15):. PubMed ID: 29769350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. African swine fever virus uses macropinocytosis to enter host cells.
    Sánchez EG; Quintas A; Pérez-Núñez D; Nogal M; Barroso S; Carrascosa ÁL; Revilla Y
    PLoS Pathog; 2012; 8(6):e1002754. PubMed ID: 22719252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration.
    Vanlandingham PA; Ceresa BP
    J Biol Chem; 2009 May; 284(18):12110-24. PubMed ID: 19265192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the function of ESCRT complex and LBPA in ASFV infection.
    Barrado-Gil L; García-Dorival I; Galindo I; Alonso C; Cuesta-Geijo MÁ
    Front Cell Infect Microbiol; 2023; 13():1163569. PubMed ID: 38125905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration.
    Matamoros T; Alejo A; Rodríguez JM; Hernáez B; Guerra M; Fraile-Ramos A; Andrés G
    mBio; 2020 Aug; 11(4):. PubMed ID: 32788374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection.
    Quetglas JI; Hernáez B; Galindo I; Muñoz-Moreno R; Cuesta-Geijo MA; Alonso C
    J Virol; 2012 Feb; 86(3):1758-67. PubMed ID: 22114329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.
    Galindo I; Cuesta-Geijo MA; Hlavova K; Muñoz-Moreno R; Barrado-Gil L; Dominguez J; Alonso C
    Virus Res; 2015 Mar; 200():45-55. PubMed ID: 25662020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of host translational machinery by African swine fever virus.
    Castelló A; Quintas A; Sánchez EG; Sabina P; Nogal M; Carrasco L; Revilla Y
    PLoS Pathog; 2009 Aug; 5(8):e1000562. PubMed ID: 19714237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinpointing retrovirus entry sites in cells expressing alternatively spliced receptor isoforms by single virus imaging.
    Padilla-Parra S; Marin M; Kondo N; Melikyan GB
    Retrovirology; 2014 Jun; 11():47. PubMed ID: 24935247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid Exchange Factors at Membrane Contact Sites in African Swine Fever Virus Infection.
    Galindo I; Cuesta-Geijo MÁ; Del Puerto A; Soriano E; Alonso C
    Viruses; 2019 Feb; 11(3):. PubMed ID: 30813555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emodin and rhapontigenin inhibit the replication of African swine fever virus by interfering with virus entry.
    Guo Y; Chen Y; Wang Q; Wang Z; Gong L; Sun Y; Song Z; Chang H; Zhang G; Wang H
    Vet Microbiol; 2023 Sep; 284():109794. PubMed ID: 37295229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into the Assembly of the African Swine Fever Virus Inner Capsid.
    Li H; Liu Q; Shao L; Xiang Y
    J Virol; 2023 Jun; 97(6):e0026823. PubMed ID: 37191520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porcine Enteric Alphacoronavirus Entry through Multiple Pathways (Caveolae, Clathrin, and Macropinocytosis) Requires Rab GTPases for Endosomal Transport.
    Chen XN; Liang YF; Weng ZJ; Quan WP; Hu C; Peng YZ; Sun YS; Gao Q; Huang Z; Zhang GH; Gong L
    J Virol; 2023 Apr; 97(4):e0021023. PubMed ID: 36975780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry.
    Hernaez B; Alonso C
    J Virol; 2010 Feb; 84(4):2100-9. PubMed ID: 19939916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.