These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23134072)

  • 1. Direct growth of graphene nanoribbons for large-scale device fabrication.
    Martin-Fernandez I; Wang D; Zhang Y
    Nano Lett; 2012 Dec; 12(12):6175-9. PubMed ID: 23134072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons.
    Liang X; Wi S
    ACS Nano; 2012 Nov; 6(11):9700-10. PubMed ID: 23078122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Teyssandier J; Mali KS; Dumslaff T; Ivanov I; Zhang W; Ruffieux P; Fasel R; Räder HJ; Turchinovich D; De Feyter S; Feng X; Kläui M; Narita A; Bonn M; Müllen K
    J Am Chem Soc; 2017 Mar; 139(10):3635-3638. PubMed ID: 28248492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Aligned Polymeric Nanowire Etch-Mask Lithography Enabling the Integration of Graphene Nanoribbon Transistors.
    Jeon S; Han P; Jeong J; Hwang WS; Hong SW
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.
    Llinas JP; Fairbrother A; Borin Barin G; Shi W; Lee K; Wu S; Yong Choi B; Braganza R; Lear J; Kau N; Choi W; Chen C; Pedramrazi Z; Dumslaff T; Narita A; Feng X; Müllen K; Fischer F; Zettl A; Ruffieux P; Yablonovitch E; Crommie M; Fasel R; Bokor J
    Nat Commun; 2017 Sep; 8(1):633. PubMed ID: 28935943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.
    Chan J; Venugopal A; Pirkle A; McDonnell S; Hinojos D; Magnuson CW; Ruoff RS; Colombo L; Wallace RM; Vogel EM
    ACS Nano; 2012 Apr; 6(4):3224-9. PubMed ID: 22390298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.
    Wan X; Huang Y; Chen Y
    Acc Chem Res; 2012 Apr; 45(4):598-607. PubMed ID: 22280410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-Effect Transistors Based on Networks of Highly Aligned, Chemically Synthesized N = 7 Armchair Graphene Nanoribbons.
    Passi V; Gahoi A; Senkovskiy BV; Haberer D; Fischer FR; Grüneis A; Lemme MC
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9900-9903. PubMed ID: 29516716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable templated growth of graphene nanoribbons on SiC.
    Sprinkle M; Ruan M; Hu Y; Hankinson J; Rubio-Roy M; Zhang B; Wu X; Berger C; de Heer WA
    Nat Nanotechnol; 2010 Oct; 5(10):727-31. PubMed ID: 20890273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.
    Chen Z; Zhang W; Palma CA; Lodi Rizzini A; Liu B; Abbas A; Richter N; Martini L; Wang XY; Cavani N; Lu H; Mishra N; Coletti C; Berger R; Klappenberger F; Kläui M; Candini A; Affronte M; Zhou C; De Renzi V; Del Pennino U; Barth JV; Räder HJ; Narita A; Feng X; Müllen K
    J Am Chem Soc; 2016 Nov; 138(47):15488-15496. PubMed ID: 27933922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors.
    Liu W; Jackson BL; Zhu J; Miao CQ; Chung CH; Park YJ; Sun K; Woo J; Xie YH
    ACS Nano; 2010 Jul; 4(7):3927-32. PubMed ID: 20536162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.
    Ramón ME; Gupta A; Corbet C; Ferrer DA; Movva HC; Carpenter G; Colombo L; Bourianoff G; Doczy M; Akinwande D; Tutuc E; Banerjee SK
    ACS Nano; 2011 Sep; 5(9):7198-204. PubMed ID: 21800895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.
    Wang H; Yu G
    Adv Mater; 2016 Jul; 28(25):4956-75. PubMed ID: 27122247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.
    Hung YH; Lu AY; Chang YH; Huang JK; Chang JK; Li LJ; Su CY
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20993-1001. PubMed ID: 27462874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site- and alignment-controlled growth of graphene nanoribbons from nickel nanobars.
    Kato T; Hatakeyama R
    Nat Nanotechnol; 2012 Oct; 7(10):651-6. PubMed ID: 22961304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene Nanoribbon Grids of Sub-10 nm Widths with High Electrical Connectivity.
    Kim N; Choi S; Yang SJ; Park J; Park JH; Nguyen NN; Park K; Ryu S; Cho K; Kim CJ
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28593-28599. PubMed ID: 34101416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene nanoribbons initiated from molecularly derived seeds.
    Way AJ; Jacobberger RM; Guisinger NP; Saraswat V; Zheng X; Suresh A; Dwyer JH; Gopalan P; Arnold MS
    Nat Commun; 2022 May; 13(1):2992. PubMed ID: 35637229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.