These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23135003)

  • 21. Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation.
    Baker SH; Roy M; Thornton SC; Qureshi M; Binns C
    J Phys Condens Matter; 2010 Sep; 22(38):385301. PubMed ID: 21386550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst.
    Chang YC; Chen DH
    J Hazard Mater; 2009 Jun; 165(1-3):664-9. PubMed ID: 19022566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The growth and enhanced catalytic performance of Au@Pd core-shell nanodendrites.
    Wang H; Sun Z; Yang Y; Su D
    Nanoscale; 2013 Jan; 5(1):139-42. PubMed ID: 23149579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porous alpha-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance.
    Liu X; Zhang J; Guo X; Wu S; Wang S
    Nanotechnology; 2010 Mar; 21(9):095501. PubMed ID: 20110579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heteroepitaxial growth of core-shell and core-multishell nanocrystals composed of palladium and gold.
    Wang F; Sun LD; Feng W; Chen H; Yeung MH; Wang J; Yan CH
    Small; 2010 Nov; 6(22):2566-75. PubMed ID: 20963792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes.
    Kovačič S; Mazaj M; Ješelnik M; Pahovnik D; Žagar E; Slugovc C; Logar NZ
    Macromol Rapid Commun; 2015 Sep; 36(17):1605-11. PubMed ID: 26173197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An efficient room temperature core-shell AgPd@MOF catalyst for hydrogen production from formic acid.
    Ke F; Wang L; Zhu J
    Nanoscale; 2015 May; 7(18):8321-5. PubMed ID: 25896011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Ethylene Production by MIL-100(Fe)-Based Materials.
    Fandzloch M; Maldonado CR; Navarro JAR; Barea E
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34053-34058. PubMed ID: 31468965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Flame atomic absorption spectrometric determination of H2O2 using (Au) core (Ag) shell nanoparticles].
    Jiang ZL; Tang YF; Liang AH; Gong Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1990-2. PubMed ID: 19798989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane.
    Yan JM; Zhang XB; Akita T; Haruta M; Xu Q
    J Am Chem Soc; 2010 Apr; 132(15):5326-7. PubMed ID: 20345145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of controllable core-shell gold nanoparticles and its application in detection of silver ions.
    Huang H; Qu C; Liu X; Huang S; Xu Z; Liao B; Zeng Y; Chu PK
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):183-90. PubMed ID: 21250641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An electron-rich free-standing carbon@Au core-shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol.
    Zhang P; Shao C; Li X; Zhang M; Zhang X; Su C; Lu N; Wang K; Liu Y
    Phys Chem Chem Phys; 2013 Jul; 15(25):10453-8. PubMed ID: 23685765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave synthesis of Au-Rh core-shell nanoparticles and implications of the shell thickness in hydrogenation catalysis.
    García S; Anderson RM; Celio H; Dahal N; Dolocan A; Zhou J; Humphrey SM
    Chem Commun (Camb); 2013 May; 49(39):4241-3. PubMed ID: 23389671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and photocatalytic activity of eccentric Au-titania core-shell nanoparticles by block copolymer templates.
    Li X; Fu X; Yang H
    Phys Chem Chem Phys; 2011 Feb; 13(7):2809-14. PubMed ID: 21157597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy.
    Bao F; Yao JL; Gu RA
    Langmuir; 2009 Sep; 25(18):10782-7. PubMed ID: 19552373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core.
    Zeng J; Yang J; Lee JY; Zhou W
    J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autoprogrammed synthesis of triple-layered Au@Pd@Pt core-shell nanoparticles consisting of a Au@Pd bimetallic core and nanoporous Pt shell.
    Wang L; Yamauchi Y
    J Am Chem Soc; 2010 Oct; 132(39):13636-8. PubMed ID: 20831169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile fabrication of triple-layer (Au@Ag)@polypyrrole core-shell and (Au@H2O)@polypyrrole yolk-shell nanostructures.
    Xing S; Tan LH; Chen T; Yang Y; Chen H
    Chem Commun (Camb); 2009 Apr; (13):1653-4. PubMed ID: 19294251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of core/shell nanoparticles of Au/CdSe via Au-Cd bialloy precursor.
    Lu W; Wang B; Zeng J; Wang X; Zhang S; Hou JG
    Langmuir; 2005 Apr; 21(8):3684-7. PubMed ID: 15807621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.