BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23135491)

  • 1. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-(R)-3-hydroxybutyrate] by Cupriavidus necator.
    Horvat P; Vrana Špoljarić I; Lopar M; Atlić A; Koller M; Braunegg G
    Bioprocess Biosyst Eng; 2013 Sep; 36(9):1235-50. PubMed ID: 23135491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade.
    Atlić A; Koller M; Scherzer D; Kutschera C; Grillo-Fernandes E; Horvat P; Chiellini E; Braunegg G
    Appl Microbiol Biotechnol; 2011 Jul; 91(2):295-304. PubMed ID: 21503760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico optimization and low structured kinetic model of poly[(R)-3-hydroxybutyrate] synthesis by Cupriavidus necator DSM 545 by fed-batch cultivation on glycerol.
    Spoljarić IV; Lopar M; Koller M; Muhr A; Salerno A; Reiterer A; Horvat P
    J Biotechnol; 2013 Dec; 168(4):625-35. PubMed ID: 24001933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator.
    Pradella JG; Ienczak JL; Delgado CR; Taciro MK
    Biotechnol Lett; 2012 Jun; 34(6):1003-7. PubMed ID: 22315097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process.
    Vadlja D; Koller M; Novak M; Braunegg G; Horvat P
    Appl Microbiol Biotechnol; 2016 Dec; 100(23):10065-10080. PubMed ID: 27695913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator.
    Obruca S; Benesova P; Oborna J; Marova I
    Biotechnol Lett; 2014 Apr; 36(4):775-81. PubMed ID: 24243232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersion optimization to enhance PHB production in fed-batch cultures of Ralstonia eutropha.
    Patnaik PR
    Bioresour Technol; 2006 Nov; 97(16):1994-2001. PubMed ID: 16289872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple structured mathematical model for biopolymer (PHB) production.
    Khanna S; Srivastava AK
    Biotechnol Prog; 2005; 21(3):830-8. PubMed ID: 15932263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated batch cultivation of Ralstonia eutropha for Poly (beta-hydroxybutyrate) production.
    Khanna S; Srivastava AK
    Biotechnol Lett; 2005 Sep; 27(18):1401-3. PubMed ID: 16215857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system.
    Du G; Chen J; Yu J; Lun S
    J Biotechnol; 2001 Jun; 88(1):59-65. PubMed ID: 11377765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant in batch fill-and-draw fermentation.
    Biglari N; Orita I; Fukui T; Sudesh K
    J Biotechnol; 2020 Jan; 307():77-86. PubMed ID: 31669355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H 16.
    Hoefel T; Wittmann E; Reinecke L; Weuster-Botz D
    Appl Microbiol Biotechnol; 2010 Sep; 88(2):477-84. PubMed ID: 20625719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-batch cultivation of Wautersia eutropha.
    Patwardhan P; Srivastava AK
    Bioresour Technol; 2008 Apr; 99(6):1787-92. PubMed ID: 17532211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations.
    Shang L; Jiang M; Chang HN
    Biotechnol Lett; 2003 Sep; 25(17):1415-9. PubMed ID: 14514042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of carbon source supplementation on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator.
    Fereidouni M; Younesi H; Daneshi A; Sharifzadeh M
    Biotechnol Appl Biochem; 2011 May; 58(3):203-11. PubMed ID: 21679245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of acetic acid-affected growth and poly(3-hydroxybutyrate) production by Cupriavidus necator DSM 545.
    Marudkla J; Lee WC; Wannawilai S; Chisti Y; Sirisansaneeyakul S
    J Biotechnol; 2018 Feb; 268():12-20. PubMed ID: 29329945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling pure culture heterotrophic production of polyhydroxybutyrate (PHB).
    Mozumder MS; Goormachtigh L; Garcia-Gonzalez L; De Wever H; Volcke EI
    Bioresour Technol; 2014 Mar; 155():272-80. PubMed ID: 24457311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cybernetic model predictive control of a continuous bioreactor with cell recycle.
    Gadkar KG; Doyle FJ; Crowley TJ; Varner JD
    Biotechnol Prog; 2003; 19(5):1487-97. PubMed ID: 14524710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cognitive optimization of microbial PHB production in an optimally dispersed bioreactor by single and mixed cultures.
    Patnaik PR
    Bioprocess Biosyst Eng; 2009 Jun; 32(4):557-68. PubMed ID: 19005684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of poly-β-hydroxybutyrate production by Bacillus subtilis and its use for feed-forward bioreactor studies.
    Yadav J; Patra N
    Appl Microbiol Biotechnol; 2023 Jan; 107(1):57-69. PubMed ID: 36418545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.