BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 23135524)

  • 21. Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis?
    Righolt C; Mai S
    Genes Chromosomes Cancer; 2012 Nov; 51(11):975-81. PubMed ID: 22811041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two Patients with Complex Rearrangements Suggestive of Germline Chromoanagenesis.
    Arya P; Hodge JC; Matlock PA; Vance GH; Breman AM
    Cytogenet Genome Res; 2020; 160(11-12):671-679. PubMed ID: 33535208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders.
    Zepeda-Mendoza CJ; Morton CC
    Am J Hum Genet; 2019 Apr; 104(4):565-577. PubMed ID: 30951674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.
    Collins RL; Brand H; Redin CE; Hanscom C; Antolik C; Stone MR; Glessner JT; Mason T; Pregno G; Dorrani N; Mandrile G; Giachino D; Perrin D; Walsh C; Cipicchio M; Costello M; Stortchevoi A; An JY; Currall BB; Seabra CM; Ragavendran A; Margolin L; Martinez-Agosto JA; Lucente D; Levy B; Sanders SJ; Wapner RJ; Quintero-Rivera F; Kloosterman W; Talkowski ME
    Genome Biol; 2017 Mar; 18(1):36. PubMed ID: 28260531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.
    Mazzagatti A; Engel JL; Ly P
    Mol Cell; 2024 Jan; 84(1):55-69. PubMed ID: 38029753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements.
    Zhang CZ; Leibowitz ML; Pellman D
    Genes Dev; 2013 Dec; 27(23):2513-30. PubMed ID: 24298051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review.
    Pellestor F; Gatinois V; Puechberty J; Geneviève D; Lefort G
    Fertil Steril; 2014 Dec; 102(6):1785-96. PubMed ID: 25439810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stable transmission of complex chromosomal rearrangements involving chromosome 1q derived from constitutional chromoanagenesis.
    Gudipati MA; Waters E; Greene C; Goel N; Hoppman NL; Pitel BA; Webley MR; Zou Y
    Mol Cytogenet; 2019; 12():43. PubMed ID: 31695749
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prevalence and clinical implications of chromothripsis in cancer genomes.
    Kloosterman WP; Koster J; Molenaar JJ
    Curr Opin Oncol; 2014 Jan; 26(1):64-72. PubMed ID: 24305569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining.
    Ly P; Teitz LS; Kim DH; Shoshani O; Skaletsky H; Fachinetti D; Page DC; Cleveland DW
    Nat Cell Biol; 2017 Jan; 19(1):68-75. PubMed ID: 27918550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Genomic Characteristics and Origin of Chromothripsis.
    Marcozzi A; Pellestor F; Kloosterman WP
    Methods Mol Biol; 2018; 1769():3-19. PubMed ID: 29564814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear chromosome locations dictate segregation error frequencies.
    Klaasen SJ; Truong MA; van Jaarsveld RH; Koprivec I; Štimac V; de Vries SG; Risteski P; Kodba S; Vukušić K; de Luca KL; Marques JF; Gerrits EM; Bakker B; Foijer F; Kind J; Tolić IM; Lens SMA; Kops GJPL
    Nature; 2022 Jul; 607(7919):604-609. PubMed ID: 35831506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex human chromosomal and genomic rearrangements.
    Zhang F; Carvalho CM; Lupski JR
    Trends Genet; 2009 Jul; 25(7):298-307. PubMed ID: 19560228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic origins of diverse genome rearrangements in cancer.
    Dahiya R; Hu Q; Ly P
    Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the Molecular Basis Underlying Chromothripsis.
    Ostapińska K; Styka B; Lejman M
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A chromoanagenesis-driven ultra-complex t(5;7;21)dn truncates neurodevelopmental genes in a disabled boy as revealed by whole-genome sequencing.
    Córdova-Fletes C; Rivera H; Aguayo-Orozco TA; Martínez-Jacobo LA; Garza-González E; Robles-Espinoza CD; Basurto-Lozada P; Avalos-Gómez HG; Esparza-García E; Domínguez-Quezada MG
    Eur J Med Genet; 2022 Oct; 65(10):104579. PubMed ID: 35933106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromothripsis and cancer: causes and consequences of chromosome shattering.
    Forment JV; Kaidi A; Jackson SP
    Nat Rev Cancer; 2012 Oct; 12(10):663-70. PubMed ID: 22972457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Replicative and non-replicative mechanisms in the formation of clustered CNVs are indicated by whole genome characterization.
    Nazaryan-Petersen L; Eisfeldt J; Pettersson M; Lundin J; Nilsson D; Wincent J; Lieden A; Lovmar L; Ottosson J; Gacic J; Mäkitie O; Nordgren A; Vezzi F; Wirta V; Käller M; Hjortshøj TD; Jespersgaard C; Houssari R; Pignata L; Bak M; Tommerup N; Lundberg ES; Tümer Z; Lindstrand A
    PLoS Genet; 2018 Nov; 14(11):e1007780. PubMed ID: 30419018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromoanagenesis: a piece of the macroevolution scenario.
    Pellestor F; Gatinois V
    Mol Cytogenet; 2020; 13():3. PubMed ID: 32010222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.