These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 23135632)
41. Phloridzin Highly Accumulated in Malus rockii Rehder and Its Structure Revision and Hypolipidemic Activity. Lang LJ; Wang M; Lei C; Shen Y; Zhu QJ; Diao HM; Chen H; Shen L; Dong X; Jiang B; Xiao CJ Planta Med; 2022 Oct; 88(13):1190-1198. PubMed ID: 34875697 [TBL] [Abstract][Full Text] [Related]
42. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. López de Dicastillo C; Bustos F; Valenzuela X; López-Carballo G; Vilariño JM; Galotto MJ Food Res Int; 2017 Dec; 102():119-128. PubMed ID: 29195930 [TBL] [Abstract][Full Text] [Related]
43. Phloridzin-induced melanogenesis is mediated by the cAMP signaling pathway. Jung E; Lee J; Huh S; Lee J; Kim YS; Kim G; Park D Food Chem Toxicol; 2009 Oct; 47(10):2436-40. PubMed ID: 19576939 [TBL] [Abstract][Full Text] [Related]
44. Impact of phloretin and phloridzin on the formation of Maillard reaction products in aqueous models composed of glucose and L-lysine or its derivatives. Ma J; Peng X; Ng KM; Che CM; Wang M Food Funct; 2012 Feb; 3(2):178-86. PubMed ID: 22159289 [TBL] [Abstract][Full Text] [Related]
45. Preparative separation of phloridzin from apple leaves using macroporous resins followed by preparative high-performance liquid chromatography. Li H; Hou G; Li Y; Zhao F; Cong W; Wang C J Sep Sci; 2018 Oct; 41(20):3918-3924. PubMed ID: 30133160 [TBL] [Abstract][Full Text] [Related]
46. The role of enoyl reductase genes in phloridzin biosynthesis in apple. Dare AP; Tomes S; Cooney JM; Greenwood DR; Hellens RP Plant Physiol Biochem; 2013 Nov; 72():54-61. PubMed ID: 23510577 [TBL] [Abstract][Full Text] [Related]
47. Ultrasound-assisted synthesis of novel 1,2,3-triazoles coupled diaryl sulfone moieties by the CuAAC reaction, and biological evaluation of them as antioxidant and antimicrobial agents. Mady MF; Awad GE; Jørgensen KB Eur J Med Chem; 2014 Sep; 84():433-43. PubMed ID: 25038485 [TBL] [Abstract][Full Text] [Related]
48. Analysis of Polyphenolic Compounds in Extracts from Leaves of Some Sowa A; Zgórka G; Szykuła A; Franiczek R; Żbikowska B; Gamian A; Sroka Z Biomed Res Int; 2016; 2016():6705431. PubMed ID: 28097143 [TBL] [Abstract][Full Text] [Related]
49. Polyphenols as natural antioxidants in cosmetics applications. de Lima Cherubim DJ; Buzanello Martins CV; Oliveira Fariña L; da Silva de Lucca RA J Cosmet Dermatol; 2020 Jan; 19(1):33-37. PubMed ID: 31389656 [TBL] [Abstract][Full Text] [Related]
50. Optimization of the ultrasound-assisted extraction of antioxidant phloridzin from Lithocarpus polystachyus Rehd. using response surface methodology. Chen Y; Yin LZ; Zhao L; Shu G; Yuan ZX; Fu HL; Lv C; Lin JC J Sep Sci; 2017 Nov; 40(22):4329-4337. PubMed ID: 28898533 [TBL] [Abstract][Full Text] [Related]
51. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Najafian M; Jahromi MZ; Nowroznejhad MJ; Khajeaian P; Kargar MM; Sadeghi M; Arasteh A Mol Biol Rep; 2012 May; 39(5):5299-306. PubMed ID: 22167331 [TBL] [Abstract][Full Text] [Related]
52. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity. Qian A; Zheng Y; Wang R; Wei J; Cui Y; Cao X; Yang Y Bioorg Med Chem Lett; 2018 Feb; 28(3):344-350. PubMed ID: 29289430 [TBL] [Abstract][Full Text] [Related]
54. Aqueous dispersions of organogel nanoparticles - potential systems for cosmetic and dermo-cosmetic applications. Kirilov P; Rum S; Gilbert E; Roussel L; Salmon D; Abdayem R; Serre C; Villa C; Haftek M; Falson F; Pirot F Int J Cosmet Sci; 2014 Aug; 36(4):336-46. PubMed ID: 24749969 [TBL] [Abstract][Full Text] [Related]
55. Synthesis, in vitro antimicrobial and antioxidant activities of some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Yüksek H; Akyıldırım O; Yola ML; Gürsoy-Kol Ö; Çelebier M; Kart D Arch Pharm (Weinheim); 2013 Jun; 346(6):470-80. PubMed ID: 23649459 [TBL] [Abstract][Full Text] [Related]
56. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Barreca D; Bellocco E; Laganà G; Ginestra G; Bisignano C Food Chem; 2014 Oct; 160():292-7. PubMed ID: 24799241 [TBL] [Abstract][Full Text] [Related]
57. The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Rezk BM; Haenen GR; van der Vijgh WJ; Bast A Biochem Biophys Res Commun; 2002 Jul; 295(1):9-13. PubMed ID: 12083758 [TBL] [Abstract][Full Text] [Related]
59. Molecular Docking and Quantum Studies of Lawsone Dimers Derivatives: New Investigation of Antioxidant Behavior and Antifungal Activity. de Oliveira AS; Palomino-Salcedo DL; Zapp E; Brondani D; Hoppe TD; Brondani PB; Meier L; Johann S; Ferreira LLG; Andricopulo AD Curr Top Med Chem; 2020; 20(3):182-191. PubMed ID: 31868147 [TBL] [Abstract][Full Text] [Related]
60. Pyrrolo[1,2-α][1,4]benzodiazepines show potent in vitro antifungal activity and significant in vivo efficacy in a Microsporum canis dermatitis model in guinea pigs. Paulussen C; de Wit K; Boulet G; Cos P; Meerpoel L; Maes L J Antimicrob Chemother; 2014 Jun; 69(6):1608-10. PubMed ID: 24535279 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]