BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 23135738)

  • 21. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics.
    Michelot A; Simard S; Rathgeber C; Dufrêne E; Damesin C
    Tree Physiol; 2012 Aug; 32(8):1033-45. PubMed ID: 22718524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy.
    Piqueras S; Füchtner S; Rocha de Oliveira R; Gómez-Sánchez A; Jelavić S; Keplinger T; de Juan A; Thygesen LG
    Front Plant Sci; 2019; 10():1701. PubMed ID: 32117328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agatharesinol biosynthesis-related changes of ray parenchyma in sapwood sticks of Cryptomeria japonica during cell death.
    Nakaba S; Arakawa I; Morimoto H; Nakada R; Bito N; Imai T; Funada R
    Planta; 2016 May; 243(5):1225-36. PubMed ID: 26895336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heartwood and sapwood in eucalyptus trees: non-conventional approach to wood quality.
    Cherelli SG; Sartori MMP; Próspero AG; Ballarin AW
    An Acad Bras Cienc; 2018; 90(1):425-438. PubMed ID: 29641766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis.
    Kuroda K; Fujiwara T; Hashida K; Imai T; Kushi M; Saito K; Fukushima K
    Ann Bot; 2014 May; 113(6):1029-36. PubMed ID: 24651372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Seasonal course of translocation, storage and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings.
    Kagawa A; Sugimoto A; Maximov TC
    New Phytol; 2006; 171(4):793-803. PubMed ID: 16918550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wood formation in Angiosperms.
    Déjardin A; Laurans F; Arnaud D; Breton C; Pilate G; Leplé JC
    C R Biol; 2010 Apr; 333(4):325-34. PubMed ID: 20371107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.
    Schneuwly DM; Stoffel M; Dorren LK; Berger F
    Tree Physiol; 2009 Oct; 29(10):1247-57. PubMed ID: 19696053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Earlier onset and slower heartwood investment in faster-growing trees of African tropical species.
    Kafuti C; Lehnebach R; Bourland N; Beeckman H; Van Acker J; Luambua NK; Van den Bulcke J
    Ann Bot; 2024 May; 133(5-6):905-916. PubMed ID: 37409979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia.
    Yang J; Park S; Kamdem DP; Keathley DE; Retzel E; Paule C; Kapur V; Han KH
    Plant Mol Biol; 2003 Jul; 52(5):935-56. PubMed ID: 14558656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrative Metabolomic and Transcriptomic Analysis Reveals the Mechanism of Specific Color Formation in
    Yang H; An W; Gu Y; Peng J; Jiang Y; Li J; Chen L; Zhu P; He F; Zhang F; Xiao J; Liu M; Wan X
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bole water content shows little seasonal variation in century-old Douglas-fir trees.
    Beedlow PA; Tingey DT; Waschmann RS; Phillips DL; Johnson MG
    Tree Physiol; 2007 May; 27(5):737-47. PubMed ID: 17267364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insights into intraspecific wood density variation and its relationship to growth, height and elevation in a treeline species.
    Fajardo A
    Plant Biol (Stuttg); 2018 May; 20(3):456-464. PubMed ID: 29394527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping.
    Chantuma P; Lacointe A; Kasemsap P; Thanisawanyangkura S; Gohet E; Clément A; Guilliot A; Améglio T; Thaler P
    Tree Physiol; 2009 Aug; 29(8):1021-31. PubMed ID: 19556234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water, starch, and nuclear behavior in ray parenchyma during heartwood formation of
    Guo P; Zhao X; Yang Z; Wang Y; Li H; Zhang L
    Heliyon; 2024 Mar; 10(5):e27231. PubMed ID: 38486779
    [No Abstract]   [Full Text] [Related]  

  • 36. Chemical composition and natural durability of juvenile and mature heartwood of Robinia pseudoacacia L.
    Latorraca JV; Dünisch O; Koch G
    An Acad Bras Cienc; 2011 Sep; 83(3):1059-68. PubMed ID: 21779654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drought alters timing, quantity, and quality of wood formation in Scots pine.
    Eilmann B; Zweifel R; Buchmann N; Graf Pannatier E; Rigling A
    J Exp Bot; 2011 May; 62(8):2763-71. PubMed ID: 21273335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship of dirigent protein and 18s RNA transcript localization to heartwood formation in western red cedar.
    Patten AM; Davin LB; Lewis NG
    Phytochemistry; 2008 Dec; 69(18):3032-7. PubMed ID: 18789459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cambial Age Influences PCD Gene Expression during Xylem Development and Heartwood Formation.
    Moshchenskaya YL; Galibina NA; Tarelkina TV; Nikerova KM; Korzhenevsky MA; Semenova LI
    Plants (Basel); 2023 Dec; 12(23):. PubMed ID: 38068707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UPLC-ESI-MS/MS-Based Widely Targeted Metabolomics Analysis of Wood Metabolites in Teak (
    Yang G; Liang K; Zhou Z; Wang X; Huang G
    Molecules; 2020 May; 25(9):. PubMed ID: 32392900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.