These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23135850)

  • 1. Artificial microRNAs for specific gene silencing in rice.
    Warthmann N; Ossowski S; Schwab R; Weigel D
    Methods Mol Biol; 2013; 956():131-49. PubMed ID: 23135850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research.
    Sablok G; Pérez-Quintero AL; Hassan M; Tatarinova TV; López C
    Biochem Biophys Res Commun; 2011 Mar; 406(3):315-9. PubMed ID: 21329663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed gene silencing with artificial microRNAs.
    Schwab R; Ossowski S; Warthmann N; Weigel D
    Methods Mol Biol; 2010; 592():71-88. PubMed ID: 19802590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering elements for gene silencing: the artificial microRNAs technology.
    Manavella PA; Rubio-Somoza I
    Methods Mol Biol; 2011; 732():121-30. PubMed ID: 21431709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene function analysis by artificial microRNAs in Physcomitrella patens.
    Khraiwesh B; Fattash I; Arif MA; Frank W
    Methods Mol Biol; 2011; 744():57-79. PubMed ID: 21533686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of the highly accumulated microRNA*s in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa).
    Shao C; Ma X; Xu X; Meng Y
    Gene; 2013 Feb; 515(1):123-7. PubMed ID: 23201415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants.
    Ai T; Zhang L; Gao Z; Zhu CX; Guo X
    Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient gene targeting by homologous recombination in rice.
    Terada R; Urawa H; Inagaki Y; Tsugane K; Iida S
    Nat Biotechnol; 2002 Oct; 20(10):1030-4. PubMed ID: 12219079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene silencing by artificial microRNAs in Chlamydomonas.
    Zhao T; Wang W; Bai X; Qi Y
    Plant J; 2009 Apr; 58(1):157-64. PubMed ID: 19054364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene silencing in plants using artificial microRNAs and other small RNAs.
    Ossowski S; Schwab R; Weigel D
    Plant J; 2008 Feb; 53(4):674-90. PubMed ID: 18269576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice.
    Zhang D; Zhang N; Shen W; Li JF
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picking genes in the rice genome.
    Shimamoto K
    Nat Biotechnol; 2002 Oct; 20(10):983-4. PubMed ID: 12355110
    [No Abstract]   [Full Text] [Related]  

  • 13. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen.
    Zhang N; Zhang D; Chen SL; Gong BQ; Guo Y; Xu L; Zhang XN; Li JF
    Plant Physiol; 2018 Nov; 178(3):989-1001. PubMed ID: 30291175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving panicle exsertion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic.
    Chen H; Jiang S; Zheng J; Lin Y
    Plant Biotechnol J; 2013 Apr; 11(3):336-43. PubMed ID: 23164055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors.
    Carbonell A; Fahlgren N; Mitchell S; Cox KL; Reilly KC; Mockler TC; Carrington JC
    Plant J; 2015 Jun; 82(6):1061-1075. PubMed ID: 25809382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly specific gene silencing by artificial miRNAs in rice.
    Warthmann N; Chen H; Ossowski S; Weigel D; Hervé P
    PLoS One; 2008 Mar; 3(3):e1829. PubMed ID: 18350165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa).
    Peng T; Lv Q; Zhang J; Li J; Du Y; Zhao Q
    J Exp Bot; 2011 Oct; 62(14):4943-54. PubMed ID: 21791435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide identification of microRNA targets in rice.
    Li YF; Zheng Y; Addo-Quaye C; Zhang L; Saini A; Jagadeeswaran G; Axtell MJ; Zhang W; Sunkar R
    Plant J; 2010 Jun; 62(5):742-59. PubMed ID: 20202174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific gene integration in rice.
    Srivastava V
    Methods Mol Biol; 2013; 956():83-93. PubMed ID: 23135846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of artificial microRNAs in Physcomitrella patens.
    Fattash I; Khraiwesh B; Arif MA; Frank W
    Methods Mol Biol; 2012; 847():293-315. PubMed ID: 22351018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.