BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

557 related articles for article (PubMed ID: 23135893)

  • 1. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.
    Guo Y; Tan Y; Liu Y; Liu S; Zhou R; Tang H
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():197-206. PubMed ID: 28866157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sintering and the mechanical properties of the tricalcium phosphate-titania composites.
    Ayadi I; Ben Ayed F
    J Mech Behav Biomed Mater; 2015 Sep; 49():129-40. PubMed ID: 26005844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets.
    Fernandez-Garcia E; Guillem-Marti J; Gutierrez-Gonzalez CF; Fernandez A; Ginebra MP; Lopez-Esteban S
    J Biomater Appl; 2015 Jan; 29(6):813-23. PubMed ID: 25145987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and physical properties of tricalcium phosphate laminates for bone-tissue engineering.
    Tanimoto Y; Nishiyama N
    J Biomed Mater Res A; 2008 May; 85(2):427-33. PubMed ID: 17701974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of titanium-matrix composite with 20 vol% hydroxyapatite for use as heavy load-bearing hard tissue replacement.
    Chu C; Xue X; Zhu J; Yin Z
    J Mater Sci Mater Med; 2006 Mar; 17(3):245-51. PubMed ID: 16555116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma.
    Roy M; Balla VK; Bandyopadhyay A; Bose S
    Acta Biomater; 2011 Feb; 7(2):866-73. PubMed ID: 20854939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study of CaTiO3-hydroxyapatite composites for bone tissue engineering.
    Thuy Ba Linh N; Mondal D; Lee BT
    ASAIO J; 2014; 60(6):722-9. PubMed ID: 25238497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics.
    Seeley Z; Bandyopadhyay A; Bose S
    J Biomed Mater Res A; 2007 Jul; 82(1):113-21. PubMed ID: 17269142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and biological properties of hydroxyapatite reinforced with 40 vol. % titanium particles for use as hard tissue replacement.
    Chu C; Xue X; Zhu J; Yin Z
    J Mater Sci Mater Med; 2004 Jun; 15(6):665-70. PubMed ID: 15346733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique.
    Choy MT; Tang CY; Chen L; Wong CT; Tsui CP
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():746-56. PubMed ID: 25063176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradability and cytocompatibility of tricalcium phosphate/poly(amino acid) composite as bone tissue implants in orthopaedic surgery.
    Li H; Tao S; Yan Y; Lv G; Gu Y; Luo X; Yang L; Wei J
    J Biomater Sci Polym Ed; 2014; 25(11):1194-210. PubMed ID: 24927061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure evolution, mechanical properties, and enhanced bioactivity of Ti-13Nb-13Zr based calcium pyrophosphate composites for biomedical applications.
    Hu H; Zhang L; He Z; Jiang Y; Tan J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():279-287. PubMed ID: 30813028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility.
    Kim HW; Georgiou G; Knowles JC; Koh YH; Kim HE
    Biomaterials; 2004 Aug; 25(18):4203-13. PubMed ID: 15046910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental studies of healing process on compound blocks of hydroxyapatite (HAP) particles and tricalcium phosphate (TCP) powder implantation in rabbit mandible--comparison of HAP/TCP ratios and plastic methods].
    Harada Y
    Shikwa Gakuho; 1989 Feb; 89(2):263-97. PubMed ID: 2548287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: a novel orthopedic composite.
    Homaeigohar SS; Shokrgozar MA; Javadpour J; Khavandi A; Sadi AY
    J Biomed Mater Res A; 2006 Jul; 78(1):129-38. PubMed ID: 16612817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast adhesion on novel machinable calcium phosphate/lanthanum phosphate composites for orthopedic applications.
    Ergun C; Liu H; Webster TJ
    J Biomed Mater Res A; 2009 Jun; 89(3):727-33. PubMed ID: 18464257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder.
    Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH
    Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.