These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 23135951)
41. NMR investigation of the interaction between the neuronal protein tau and the microtubules. Sillen A; Barbier P; Landrieu I; Lefebvre S; Wieruszeski JM; Leroy A; Peyrot V; Lippens G Biochemistry; 2007 Mar; 46(11):3055-64. PubMed ID: 17311412 [TBL] [Abstract][Full Text] [Related]
42. The epothilones: how pharmacology relates to clinical utility. Michaud LB Ann Pharmacother; 2009 Jul; 43(7):1294-309. PubMed ID: 19584389 [TBL] [Abstract][Full Text] [Related]
43. Epothilone D affects cell cycle and microtubular pattern in plant cells. Hause G; Lischewski S; Wessjohann LA; Hause B J Exp Bot; 2005 Aug; 56(418):2131-7. PubMed ID: 15967777 [TBL] [Abstract][Full Text] [Related]
44. Reduced microtubule-nucleation activity of tau after dephosphorylation. Morita-Fujimura Y; Kurachi M; Tashiro H; Komiya Y; Tashiro T Biochem Biophys Res Commun; 1996 Aug; 225(2):462-8. PubMed ID: 8753784 [TBL] [Abstract][Full Text] [Related]
45. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization. Feyen F; Cachoux F; Gertsch J; Wartmann M; Altmann KH Acc Chem Res; 2008 Jan; 41(1):21-31. PubMed ID: 18159935 [TBL] [Abstract][Full Text] [Related]
46. Epothilone B inhibits migration of glioblastoma cells by inducing microtubule catastrophes and affecting EB1 accumulation at microtubule plus ends. Pagano A; Honoré S; Mohan R; Berges R; Akhmanova A; Braguer D Biochem Pharmacol; 2012 Aug; 84(4):432-43. PubMed ID: 22634050 [TBL] [Abstract][Full Text] [Related]
48. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules. Chung PJ; Choi MC; Miller HP; Feinstein HE; Raviv U; Li Y; Wilson L; Feinstein SC; Safinya CR Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6416-25. PubMed ID: 26542680 [TBL] [Abstract][Full Text] [Related]
50. Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity. Buey RM; Barasoain I; Jackson E; Meyer A; Giannakakou P; Paterson I; Mooberry S; Andreu JM; Díaz JF Chem Biol; 2005 Dec; 12(12):1269-79. PubMed ID: 16356844 [TBL] [Abstract][Full Text] [Related]
51. The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Nettles JH; Li H; Cornett B; Krahn JM; Snyder JP; Downing KH Science; 2004 Aug; 305(5685):866-9. PubMed ID: 15297674 [TBL] [Abstract][Full Text] [Related]
52. Two Tau binding sites on tubulin revealed by thiol-disulfide exchanges. Martinho M; Allegro D; Huvent I; Chabaud C; Etienne E; Kovacic H; Guigliarelli B; Peyrot V; Landrieu I; Belle V; Barbier P Sci Rep; 2018 Sep; 8(1):13846. PubMed ID: 30218010 [TBL] [Abstract][Full Text] [Related]
53. Interaction between S-100 proteins and steady-state and taxol-stabilized microtubules in vitro. Donato R; Giambanco I J Neurochem; 1989 Apr; 52(4):1010-7. PubMed ID: 2564420 [TBL] [Abstract][Full Text] [Related]
54. The nucleotide-binding state of microtubules modulates kinesin processivity and the ability of Tau to inhibit kinesin-mediated transport. McVicker DP; Chrin LR; Berger CL J Biol Chem; 2011 Dec; 286(50):42873-80. PubMed ID: 22039058 [TBL] [Abstract][Full Text] [Related]
55. Interaction of epothilone B (patupilone) with microtubules as detected by two-dimensional solid-state NMR spectroscopy. Kumar A; Heise H; Blommers MJ; Krastel P; Schmitt E; Petersen F; Jeganathan S; Mandelkow EM; Carlomagno T; Griesinger C; Baldus M Angew Chem Int Ed Engl; 2010 Oct; 49(41):7504-7. PubMed ID: 20809556 [No Abstract] [Full Text] [Related]
56. On-chip microtubule gliding assay for parallel measurement of tau protein species. Subramaniyan Parimalam S; Tarhan MC; Karsten SL; Fujita H; Shintaku H; Kotera H; Yokokawa R Lab Chip; 2016 Apr; 16(9):1691-7. PubMed ID: 27056640 [TBL] [Abstract][Full Text] [Related]
57. Assembly and bundling of marginal band microtubule protein: role of tau. Sanchez I; Cohen WD Cell Motil Cytoskeleton; 1994; 29(1):57-71. PubMed ID: 7820858 [TBL] [Abstract][Full Text] [Related]
58. FRET and FRAP imaging: approaches to characterise tau and stathmin interactions with microtubules in cells. Nouar R; Devred F; Breuzard G; Peyrot V Biol Cell; 2013 Apr; 105(4):149-61. PubMed ID: 23312015 [TBL] [Abstract][Full Text] [Related]
59. Crystal structures of epothilone D-bound, epothilone B-bound, and substrate-free forms of cytochrome P450epoK. Nagano S; Li H; Shimizu H; Nishida C; Ogura H; Ortiz de Montellano PR; Poulos TL J Biol Chem; 2003 Nov; 278(45):44886-93. PubMed ID: 12933799 [TBL] [Abstract][Full Text] [Related]
60. Altered tubulin assembly dynamics with N-homocysteinylated human 4R/1N tau in vitro. Karima O; Riazi G; Khodadadi S; Aryapour H; Khalili MA; Yousefi L; Moosavi-Movahedi AA FEBS Lett; 2012 Nov; 586(21):3914-9. PubMed ID: 23041345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]