These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 23135997)
1. Decoupling nutrient signaling from growth rate causes aerobic glycolysis and deregulation of cell size and gene expression. Slavov N; Botstein D Mol Biol Cell; 2013 Jan; 24(2):157-68. PubMed ID: 23135997 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of growth and sugar consumption in yeasts. van Dijken JP; Weusthuis RA; Pronk JT Antonie Van Leeuwenhoek; 1993; 63(3-4):343-52. PubMed ID: 8279829 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect). Wijsman MR; van Dijken JP; van Kleeff BH; Scheffers WA Antonie Van Leeuwenhoek; 1984; 50(2):183-92. PubMed ID: 6431904 [TBL] [Abstract][Full Text] [Related]
4. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture. Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202 [TBL] [Abstract][Full Text] [Related]
5. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793 [TBL] [Abstract][Full Text] [Related]
6. Candida albicans--a pre-whole genome duplication yeast--is predominantly aerobic and a poor ethanol producer. Rozpędowska E; Galafassi S; Johansson L; Hagman A; Piškur J; Compagno C FEMS Yeast Res; 2011 May; 11(3):285-91. PubMed ID: 21205163 [TBL] [Abstract][Full Text] [Related]
7. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes. de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095 [TBL] [Abstract][Full Text] [Related]
8. Coordination of sucrose uptake and respiration in the yeast Debaryomyces yamadae. Kaliterna J; Weusthuis RA; Castrillo JI; van Dijken JP; Pronk JT Microbiology (Reading); 1995 Jul; 141 ( Pt 7)():1567-74. PubMed ID: 7551025 [TBL] [Abstract][Full Text] [Related]
9. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359 [TBL] [Abstract][Full Text] [Related]
10. Regulation of glucose metabolism in growing yeast cells. Fiechter A; Fuhrmann GF; Käppeli O Adv Microb Physiol; 1981; 22():123-83. PubMed ID: 7036694 [No Abstract] [Full Text] [Related]
11. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Käppeli O Adv Microb Physiol; 1986; 28():181-209. PubMed ID: 3544735 [No Abstract] [Full Text] [Related]
12. Dynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism. van den Brink J; Canelas AB; van Gulik WM; Pronk JT; Heijnen JJ; de Winde JH; Daran-Lapujade P Appl Environ Microbiol; 2008 Sep; 74(18):5710-23. PubMed ID: 18641162 [TBL] [Abstract][Full Text] [Related]
13. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669 [TBL] [Abstract][Full Text] [Related]
14. Transcriptomic and proteomic insights of the wine yeast biomass propagation process. Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Matallana E FEMS Yeast Res; 2010 Nov; 10(7):870-84. PubMed ID: 20738407 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. Rintala E; Jouhten P; Toivari M; Wiebe MG; Maaheimo H; Penttilä M; Ruohonen L OMICS; 2011; 15(7-8):461-76. PubMed ID: 21348598 [TBL] [Abstract][Full Text] [Related]
16. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Slavov N; Botstein D Mol Biol Cell; 2011 Jun; 22(12):1997-2009. PubMed ID: 21525243 [TBL] [Abstract][Full Text] [Related]
17. Insufficient uracil supply in fully aerobic chemostat cultures of Saccharomyces cerevisiae leads to respiro-fermentative metabolism and double nutrient-limitation. Basso TO; Dario MG; Tonso A; Stambuk BU; Gombert AK Biotechnol Lett; 2010 Jul; 32(7):973-7. PubMed ID: 20349336 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. Tai SL; Boer VM; Daran-Lapujade P; Walsh MC; de Winde JH; Daran JM; Pronk JT J Biol Chem; 2005 Jan; 280(1):437-47. PubMed ID: 15496405 [TBL] [Abstract][Full Text] [Related]
20. New insights on transcriptional responses of genes involved in carbon central metabolism, respiration and fermentation to low ATP levels in Escherichia coli. Soria S; de Anda R; Flores N; Romero-Garcia S; Gosset G; Bolívar F; Báez-Viveros JL J Basic Microbiol; 2013 Apr; 53(4):365-80. PubMed ID: 22914992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]