These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23136155)

  • 1. Structure, innervation and response properties of integumentary sensory organs in crocodilians.
    Leitch DB; Catania KC
    J Exp Biol; 2012 Dec; 215(Pt 23):4217-30. PubMed ID: 23136155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus discrimination and surface wave source localization in Crocodilians.
    Grap NJ; Machts T; Essert S; Bleckmann H
    Zoology (Jena); 2020 Apr; 139():125743. PubMed ID: 32143125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of the rostrum in crocodilians: a comparative analysis using finite-element modeling.
    McHenry CR; Clausen PD; Daniel WJ; Meers MB; Pendharkar A
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Aug; 288(8):827-49. PubMed ID: 16835925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into the anatomy of the hyolingual apparatus of Alligator mississippiensis and implications for reconstructing feeding in extinct archosaurs.
    Li Z; Clarke JA
    J Anat; 2015 Jul; 227(1):45-61. PubMed ID: 26018316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crocodylus niloticus (Crocodilia) is highly sensitive to water surface waves.
    Grap NJ; Monzel AS; Kohl T; Bleckmann H
    Zoology (Jena); 2015 Oct; 118(5):320-4. PubMed ID: 26153334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurology: an ancient sensory organ in crocodilians.
    Soares D
    Nature; 2002 May; 417(6886):241-2. PubMed ID: 12015589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crocodile-inspired dome-shaped pressure receptors for passive hydrodynamic sensing.
    Kanhere E; Wang N; Kottapalli AG; Asadnia M; Subramaniam V; Miao J; Triantafyllou M
    Bioinspir Biomim; 2016 Aug; 11(5):056007. PubMed ID: 27545614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat.
    Lewin GR; McMahon SB
    J Neurophysiol; 1991 Oct; 66(4):1205-17. PubMed ID: 1761980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trigeminal nerve morphology in Alligator mississippiensis and its significance for crocodyliform facial sensation and evolution.
    George ID; Holliday CM
    Anat Rec (Hoboken); 2013 Apr; 296(4):670-80. PubMed ID: 23408584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the ecology and evolutionary success of crocodilians revealed through bite-force and tooth-pressure experimentation.
    Erickson GM; Gignac PM; Steppan SJ; Lappin AK; Vliet KA; Brueggen JD; Inouye BD; Kledzik D; Webb GJ
    PLoS One; 2012; 7(3):e31781. PubMed ID: 22431965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-threshold mechanoreceptive afferents in the human lingual nerve.
    Trulsson M; Essick GK
    J Neurophysiol; 1997 Feb; 77(2):737-48. PubMed ID: 9065846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and anatomical consequences of infraorbital nerve transection in the trigeminal ganglion and trigeminal spinal tract of the adult rat.
    Renehan WE; Klein BG; Chiaia NL; Jacquin MF; Rhoades RW
    J Neurosci; 1989 Feb; 9(2):548-57. PubMed ID: 2783964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica.
    Koyama H; Kishida R; Goris RC; Kusunoki T
    J Comp Neurol; 1990 May; 295(2):277-89. PubMed ID: 2358517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crocodylians evolved scattered multi-sensory micro-organs.
    Di-Poï N; Milinkovitch MC
    Evodevo; 2013 Jul; 4(1):19. PubMed ID: 23819918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual innervation of the rat vibrissa: responses of trigeminal ganglion cells projecting through deep or superficial nerves.
    Waite PM; Jacquin MF
    J Comp Neurol; 1992 Aug; 322(2):233-45. PubMed ID: 1522251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutaneous dermatomes for initiation of three forms of the scratch reflex in the spinal turtle.
    Mortin LI; Stein PS
    J Comp Neurol; 1990 May; 295(4):515-29. PubMed ID: 2358518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tactile unit properties after human cervical spinal cord injury.
    Thomas CK; Westling G
    Brain; 1995 Dec; 118 ( Pt 6)():1547-56. PubMed ID: 8595483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses in glabrous skin mechanoreceptors during precision grip in humans.
    Westling G; Johansson RS
    Exp Brain Res; 1987; 66(1):128-40. PubMed ID: 3582527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutaneous stimulation evokes long-lasting excitation of spinal interneurons in the turtle.
    Currie SN; Stein PS
    J Neurophysiol; 1990 Oct; 64(4):1134-48. PubMed ID: 2258738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptive properties of mouse sensory neurons innervating hairy skin.
    Koltzenburg M; Stucky CL; Lewin GR
    J Neurophysiol; 1997 Oct; 78(4):1841-50. PubMed ID: 9325353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.