BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 23136410)

  • 21. The role of mTOR inhibitors in preventing epileptogenesis in patients with TSC: Current evidence and future perspectives.
    Schubert-Bast S; Rosenow F; Klein KM; Reif PS; Kieslich M; Strzelczyk A
    Epilepsy Behav; 2019 Feb; 91():94-98. PubMed ID: 29941212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis.
    Neuman NA; Henske EP
    EMBO Mol Med; 2011 Apr; 3(4):189-200. PubMed ID: 21412983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impaired Mitochondrial Dynamics and Mitophagy in Neuronal Models of Tuberous Sclerosis Complex.
    Ebrahimi-Fakhari D; Saffari A; Wahlster L; Di Nardo A; Turner D; Lewis TL; Conrad C; Rothberg JM; Lipton JO; Kölker S; Hoffmann GF; Han MJ; Polleux F; Sahin M
    Cell Rep; 2016 Oct; 17(4):1053-1070. PubMed ID: 27760312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model.
    Mi R; Ma J; Zhang D; Li L; Zhang H
    J Genet Genomics; 2009 Jun; 36(6):355-61. PubMed ID: 19539245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies.
    Wong M
    Epilepsia; 2010 Jan; 51(1):27-36. PubMed ID: 19817806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex.
    Salussolia CL; Klonowska K; Kwiatkowski DJ; Sahin M
    Annu Rev Genomics Hum Genet; 2019 Aug; 20():217-240. PubMed ID: 31018109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex.
    Zhang B; Guo D; Han L; Rensing N; Satoh A; Wong M
    Neurobiol Dis; 2020 Feb; 134():104615. PubMed ID: 31605778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of antiepileptic drugs in a new TSC/mTOR-dependent epilepsy mouse model.
    Koene LMC; van Grondelle SE; Proietti Onori M; Wallaard I; Kooijman NHRM; van Oort A; Schreiber J; Elgersma Y
    Ann Clin Transl Neurol; 2019 Jul; 6(7):1273-1291. PubMed ID: 31353861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TSC but not PTEN loss in starving cones of retinitis pigmentosa mice leads to an autophagy defect and mTORC1 dissociation from the lysosome.
    Venkatesh A; Ma S; Punzo C
    Cell Death Dis; 2016 Jun; 7(6):e2279. PubMed ID: 27362797
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex.
    Rensing N; Han L; Wong M
    Epilepsia; 2015 Jul; 56(7):1088-97. PubMed ID: 26122303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. mTOR: A pathogenic signaling pathway in developmental brain malformations.
    Crino PB
    Trends Mol Med; 2011 Dec; 17(12):734-42. PubMed ID: 21890410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TORC1-dependent epilepsy caused by acute biallelic Tsc1 deletion in adult mice.
    Abs E; Goorden SM; Schreiber J; Overwater IE; Hoogeveen-Westerveld M; Bruinsma CF; Aganović E; Borgesius NZ; Nellist M; Elgersma Y
    Ann Neurol; 2013 Oct; 74(4):569-79. PubMed ID: 23720219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex.
    Zhang B; Zou J; Rensing NR; Yang M; Wong M
    Neurobiol Dis; 2015 Aug; 80():70-9. PubMed ID: 26003087
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous sclerosis.
    Yasin SA; Ali AM; Tata M; Picker SR; Anderson GW; Latimer-Bowman E; Nicholson SL; Harkness W; Cross JH; Paine SM; Jacques TS
    Acta Neuropathol; 2013 Aug; 126(2):207-18. PubMed ID: 23728790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brain Symptoms of Tuberous Sclerosis Complex: Pathogenesis and Treatment.
    Mizuguchi M; Ohsawa M; Kashii H; Sato A
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Stress-Induced Atf3-Gelsolin Cascade Underlies Dendritic Spine Deficits in Neuronal Models of Tuberous Sclerosis Complex.
    Nie D; Chen Z; Ebrahimi-Fakhari D; Di Nardo A; Julich K; Robson VK; Cheng YC; Woolf CJ; Heiman M; Sahin M
    J Neurosci; 2015 Jul; 35(30):10762-72. PubMed ID: 26224859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations.
    Wong M
    Exp Neurol; 2013 Jun; 244():22-6. PubMed ID: 22015915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes.
    Jansen LA; Uhlmann EJ; Crino PB; Gutmann DH; Wong M
    Epilepsia; 2005 Dec; 46(12):1871-80. PubMed ID: 16393152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5-Aza-2'-deoxycytidine increases hypoxia tolerance-dependent autophagy in mouse neuronal cells by initiating the TSC1/mTOR pathway.
    Qi R; Zhang X; Xie Y; Jiang S; Liu Y; Liu X; Xie W; Jia X; Bade R; Shi R; Li S; Ren C; Gong K; Zhang C; Shao G
    Biomed Pharmacother; 2019 Oct; 118():109219. PubMed ID: 31325707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. mTOR signaling in epilepsy: insights from malformations of cortical development.
    Crino PB
    Cold Spring Harb Perspect Med; 2015 Apr; 5(4):. PubMed ID: 25833943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.