BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23136436)

  • 1. Modulation of mouse rod response decay by rhodopsin kinase and recoverin.
    Chen CK; Woodruff ML; Chen FS; Chen Y; Cilluffo MC; Tranchina D; Fain GL
    J Neurosci; 2012 Nov; 32(45):15998-6006. PubMed ID: 23136436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.
    Chen CK; Woodruff ML; Fain GL
    J Gen Physiol; 2015 Mar; 145(3):213-24. PubMed ID: 25667411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods.
    Chen CK; Woodruff ML; Chen FS; Chen D; Fain GL
    J Neurosci; 2010 Jan; 30(4):1213-20. PubMed ID: 20107049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.
    Frederiksen R; Nymark S; Kolesnikov AV; Berry JD; Adler L; Koutalos Y; Kefalov VJ; Cornwall MC
    J Gen Physiol; 2016 Jul; 148(1):1-11. PubMed ID: 27353443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in rhodopsin kinase expression alters the dim flash response shut off and the light adaptation in rod photoreceptors.
    Sakurai K; Young JE; Kefalov VJ; Khani SC
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6793-800. PubMed ID: 21474765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of rhodopsin kinase regulation by recoverin.
    Komolov KE; Senin II; Kovaleva NA; Christoph MP; Churumova VA; Grigoriev II; Akhtar M; Philippov PP; Koch KW
    J Neurochem; 2009 Jul; 110(1):72-9. PubMed ID: 19457073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors.
    Kolesnikov AV; Chrispell JD; Osawa S; Kefalov VJ; Weiss ER
    FASEB J; 2020 Feb; 34(2):2677-2690. PubMed ID: 31908030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a unified model of vertebrate rod phototransduction.
    Hamer RD; Nicholas SC; Tranchina D; Lamb TD; Jarvinen JL
    Vis Neurosci; 2005; 22(4):417-36. PubMed ID: 16212700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors.
    Osawa S; Jo R; Xiong Y; Reidel B; Tserentsoodol N; Arshavsky VY; Iuvone PM; Weiss ER
    J Biol Chem; 2011 Jun; 286(23):20923-9. PubMed ID: 21504899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase.
    Sakurai K; Chen J; Khani SC; Kefalov VJ
    J Biol Chem; 2015 Apr; 290(14):9239-50. PubMed ID: 25673692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase).
    Kutuzov MA; Andreeva AV; Bennett N
    Cell Signal; 2012 Dec; 24(12):2259-67. PubMed ID: 22846544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of g protein-coupled receptor kinase 1 (Grk1) overexpression on rod photoreceptor cell viability.
    Whitcomb T; Sakurai K; Brown BM; Young JE; Sheflin L; Dlugos C; Craft CM; Kefalov VJ; Khani SC
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1728-37. PubMed ID: 19834036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments.
    Senin II; Höppner-Heitmann D; Polkovnikova OO; Churumova VA; Tikhomirova NK; Philippov PP; Koch KW
    J Biol Chem; 2004 Nov; 279(47):48647-53. PubMed ID: 15355976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Recognition of Rhodopsin Kinase GRK1 and Recoverin Is Tuned by Switching Intra- and Intermolecular Electrostatic Interactions.
    Abbas S; Marino V; Dell'Orco D; Koch KW
    Biochemistry; 2019 Oct; 58(43):4374-4385. PubMed ID: 31621304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acceleration of key reactions as a strategy to elucidate the rate-limiting chemistry underlying phototransduction inactivation.
    Kennedy MJ; Sowa ME; Wensel TG; Hurley JB
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1016-22. PubMed ID: 12601023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elementary response triggered by transducin in retinal rods.
    Yue WWS; Silverman D; Ren X; Frederiksen R; Sakai K; Yamashita T; Shichida Y; Cornwall MC; Chen J; Yau KW
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5144-5153. PubMed ID: 30796193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.