These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 23136499)
1. Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Oki N; Komatsu K; Sayama T; Ishimoto M; Takahashi M; Takahashi M Breed Sci; 2012 Jan; 61(5):608-17. PubMed ID: 23136499 [TBL] [Abstract][Full Text] [Related]
2. QTL mapping of antixenosis resistance to common cutworm (Spodoptera litura Fabricius) in wild soybean (Glycine soja). Oki N; Kaga A; Shimizu T; Takahashi M; Kono Y; Takahashi M PLoS One; 2017; 12(12):e0189440. PubMed ID: 29232719 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the resistance effect of QTLs derived from wild soybean ( Oki N; Takagi K; Ishimoto M; Takahashi M; Takahashi M Breed Sci; 2019 Sep; 69(3):529-535. PubMed ID: 31598088 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the genomic sequence data around common cutworm resistance genes in soybean ( Ogiso-Tanaka E; Oki N; Tanaka T; Shimizu T; Ishimoto M; Hajika M; Kaga A Data Brief; 2021 Feb; 34():106577. PubMed ID: 33376760 [TBL] [Abstract][Full Text] [Related]
5. The Identification of a Quantative Trait Loci-Allele System of Antixenosis against the Common Cutworm ( Pan L; Gai J; Xing G Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003278 [TBL] [Abstract][Full Text] [Related]
6. A high-throughput phenotyping procedure for evaluation of antixenosis against common cutworm at early seedling stage in soybean. Xing G; Liu K; Gai J Plant Methods; 2017; 13():66. PubMed ID: 28794796 [TBL] [Abstract][Full Text] [Related]
7. Genetic Architecture and Candidate Genes for Pubescence Length and Density and Its Relationship With Resistance to Common Cutworm in Soybean. Li Y; Chu L; Liu X; Zhang N; Xu Y; Karikari B; Wang Y; Chang F; Liu Z; Tan L; Yue H; Xing G; Zhao T Front Plant Sci; 2021; 12():771850. PubMed ID: 35069626 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of antixenosis in soybean against Yano M; Inoue T; Nakata R; Teraishi M; Yoshinaga N; Ono H; Okumoto Y; Mori N J Pestic Sci; 2021 May; 46(2):182-188. PubMed ID: 34135679 [TBL] [Abstract][Full Text] [Related]
9. Effect of pubescence tip on soybean resistance to lepidopteran insects. Hulburt DJ; Boerma HR; All JN J Econ Entomol; 2004 Apr; 97(2):621-7. PubMed ID: 15154491 [TBL] [Abstract][Full Text] [Related]
10. Knockdown of GmVQ58 encoding a VQ motif-containing protein enhances soybean resistance to the common cutworm (Spodoptera litura Fabricius). Li X; Qin R; Du Q; Cai L; Hu D; Du H; Yang H; Wang J; Huang F; Wang H; Yu D J Exp Bot; 2020 May; 71(10):3198-3210. PubMed ID: 32076725 [TBL] [Abstract][Full Text] [Related]
11. Soybean Wang H; Li X; Su F; Liu H; Hu D; Huang F; Yu D; Wang H Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555336 [TBL] [Abstract][Full Text] [Related]
12. RNA-Seq analysis reveals transcript diversity and active genes after common cutworm (Spodoptera litura Fabricius) attack in resistant and susceptible wild soybean lines. Du H; Li X; Ning L; Qin R; Du Q; Wang Q; Song H; Huang F; Wang H; Yu D BMC Genomics; 2019 Mar; 20(1):237. PubMed ID: 30902045 [TBL] [Abstract][Full Text] [Related]
13. Molecular Basis Underlying Common Cutworm Resistance of the Primitive Soybean Landrace Peking. Nakata R; Yano M; Hiraga S; Teraishi M; Okumoto Y; Mori N; Kaga A Front Genet; 2020; 11():581917. PubMed ID: 33304385 [TBL] [Abstract][Full Text] [Related]
14. Seed yield of near-isogenic soybean lines with introgressed quantitative trait loci conditioning resistance to corn earworm (Lepidoptera: Noctuidae) and soybean looper (Lepidoptera: Noctuidae) from PI 229358. Warrington CV; Zhu S; Parrott WA; All JN; Boerma HR J Econ Entomol; 2008 Aug; 101(4):1471-7. PubMed ID: 18767762 [TBL] [Abstract][Full Text] [Related]
15. Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Jun TH; Rouf Mian MA; Michel AP Theor Appl Genet; 2012 Jan; 124(1):13-22. PubMed ID: 21912856 [TBL] [Abstract][Full Text] [Related]
16. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean. Ortega MA; All JN; Boerma HR; Parrott WA Theor Appl Genet; 2016 Apr; 129(4):703-715. PubMed ID: 26724806 [TBL] [Abstract][Full Text] [Related]
17. Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines. Zhu S; Walker DR; Boerma HR; All JN; Parrott WA Theor Appl Genet; 2008 Feb; 116(4):455-63. PubMed ID: 18064435 [TBL] [Abstract][Full Text] [Related]
18. Detection of novel QTLs for foxglove aphid resistance in soybean. Lee JS; Yoo MH; Jung JK; Bilyeu KD; Lee JD; Kang S Theor Appl Genet; 2015 Aug; 128(8):1481-8. PubMed ID: 25904004 [TBL] [Abstract][Full Text] [Related]
19. Identification of QTL in soybean underlying resistance to herbivory by Japanese beetles (Popillia japonica, Newman). Yesudas CR; Sharma H; Lightfoot DA Theor Appl Genet; 2010 Jul; 121(2):353-62. PubMed ID: 20458460 [TBL] [Abstract][Full Text] [Related]
20. Major QTLs associated with green stem disorder insensitivity of soybean (Glycine max (L.) Merr.). Yamada T; Shimada S; Hajika M; Hirata K; Takahashi K; Nagaya T; Hamaguchi H; Maekawa T; Sayama T; Hayashi T; Ishimoto M; Tanaka J Breed Sci; 2014 Dec; 64(4):331-8. PubMed ID: 25914587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]