These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23136521)

  • 1. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.
    Zhang J; Liu F; Yao L; Luo C; Yin Y; Wang G; Huang Y
    Breed Sci; 2012 Jun; 62(2):105-12. PubMed ID: 23136521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene.
    Cho HS; Cao J; Ren JP; Earle ED
    Plant Cell Rep; 2001 Jan; 20(1):1-7. PubMed ID: 30759906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resistance of transgenic cabbage plants with a synthetic cry1Ia8 gene from Bacillus thuringiensis against two lepidopteran species under field conditions.
    Yi D; Yang W; Tang J; Wang L; Fang Z; Liu Y; Zhuang M; Zhang Y; Yang L
    Pest Manag Sci; 2016 Feb; 72(2):315-21. PubMed ID: 25721816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of cry1Aa gene in cabbage imparts resistance against diamondback moth (Plutella xylostella).
    Gambhir G; Kumar P; Aggarwal G; Srivastava DK; Thakur AK
    Biol Futur; 2020 Jun; 71(1-2):165-173. PubMed ID: 34554534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of transgenic broccoli with
    Kumar P; Gambhir G; Gaur A; Sharma KC; Thakur AK; Srivastava DK
    3 Biotech; 2018 Jul; 8(7):299. PubMed ID: 29963359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin.
    Vanjildorj E; Song SY; Yang ZH; Choi JE; Noh YS; Park S; Lim WJ; Cho KM; Yun HD; Lim YP
    Plant Cell Rep; 2009 Oct; 28(10):1581-91. PubMed ID: 19680657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes.
    Xiang Y; Wong WR; Ma MC; Wong RSC
    Plant Cell Rep; 2000 Jan; 19(3):251-256. PubMed ID: 30754903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant.
    Duan X; Li X; Xue Q; Abo-el-Saad M; Xu D; Wu R
    Nat Biotechnol; 1996 Apr; 14(4):494-8. PubMed ID: 9630927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae.
    Cao J; Shelton AM; Earle ED
    Plant Cell Rep; 2008 Mar; 27(3):479-87. PubMed ID: 17989981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pest protection conferred by a Beta vulgaris serine proteinase inhibitor gene.
    Smigocki AC; Ivic-Haymes S; Li H; Savić J
    PLoS One; 2013; 8(2):e57303. PubMed ID: 23468963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory effects of an extract from non-host plants on physiological characteristics of two major cabbage pests.
    Dastranj M; Borzoui E; Bandani AR; Franco OL
    Bull Entomol Res; 2018 Jun; 108(3):370-379. PubMed ID: 29039281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective pest management approach in potato to combat insect pests and herbicide.
    Amiri AN; Bakhsh A
    3 Biotech; 2019 Jan; 9(1):16. PubMed ID: 30622854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Glucosinolate Content and Host-Plant Preference and Suitability in the Small White Butterfly (Lepidoptera: Pieridae) and Comparison with Another Specialist Lepidopteran.
    Badenes-Pérez FR
    Plants (Basel); 2023 May; 12(11):. PubMed ID: 37299126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eco-Geographical and Botanical Patterns of Resistance to Lepidoptera Insects in
    Artemyeva AM; Kurina AB
    Plants (Basel); 2024 Feb; 13(5):. PubMed ID: 38475519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of action thresholds and spinosad for lepidopteran pest management in Minnesota cabbage.
    Hines RL; Hutchison WD
    J Econ Entomol; 2001 Feb; 94(1):190-6. PubMed ID: 11233112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.
    Cingel A; Savić J; Vinterhalter B; Vinterhalter D; Kostić M; Jovanović DŠ; Smigocki A; Ninković S
    Transgenic Res; 2015 Aug; 24(4):729-40. PubMed ID: 25820664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucosinolate Profiles in Cabbage Genotypes Influence the Preferential Feeding of Diamondback Moth (
    Robin AHK; Hossain MR; Park JI; Kim HR; Nou IS
    Front Plant Sci; 2017; 8():1244. PubMed ID: 28769953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris alpha-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker.
    Sonia ; Saini R; Singh RP; Jaiwal PK
    Plant Cell Rep; 2007 Feb; 26(2):187-98. PubMed ID: 16983450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic expression of nucleolar DEAD-Box RNA helicase OsTOGR1 confers improved heat stress tolerance in transgenic Chinese cabbage.
    Yarra R; Xue Y
    Plant Cell Rep; 2020 Dec; 39(12):1803-1814. PubMed ID: 32995946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-Cysteine Increases the Transformation Efficiency of Chinese Cabbage (
    Sivanandhan G; Moon J; Sung C; Bae S; Yang ZH; Jeong SY; Choi SR; Kim SG; Lim YP
    Front Plant Sci; 2021; 12():767140. PubMed ID: 34764973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.