These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23136775)

  • 41. Alteration of lipid fatty acid profile and cationic fluxes in ventricular cardiomyocytes from omega3-depleted rats.
    Peltier S; Louchami K; Zhang Y; Portois L; Hacquebard M; Malaisse WJ; Carpentier YA
    Int J Mol Med; 2009 Sep; 24(3):343-52. PubMed ID: 19639226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vitamin E deficiency alters the in vivo Rb+ discrimination of rat brain cortical cells.
    Pieri C; Giuli C; Bertoni-Freddari C; Bernardini A
    Arch Gerontol Geriatr; 1986 Apr; 5(1):21-31. PubMed ID: 3718068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Relationship between K+ flux and heart rate: an 87Rb n.m.r. study.
    Snaith CD; Allis JL; Radda GK; Seymour AM
    Biochem Soc Trans; 1990 Aug; 18(4):663. PubMed ID: 2177423
    [No Abstract]   [Full Text] [Related]  

  • 44. Electron probe microanalysis of intracellular potassium concentration in early mouse embryos.
    Pogorelov AG; Goldstein DV; Smolyaninova EI; Sakharova NY
    Dokl Biochem Biophys; 2005; 400():38-9. PubMed ID: 15846980
    [No Abstract]   [Full Text] [Related]  

  • 45. Electron probe microanalysis of cellular potassium distribution.
    Kimzey SL; Burns LC
    Ann N Y Acad Sci; 1973 Mar; 204():486-501. PubMed ID: 4513165
    [No Abstract]   [Full Text] [Related]  

  • 46. NMR relaxation characteristics of rubidium-87 in perfused rat salivary glands.
    Steward MC; Seo Y; Murakami M; Watari H
    Proc Biol Sci; 1991 Feb; 243(1307):115-20. PubMed ID: 1676514
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A non-invasive method of measuring concentrations of rubidium in rat skeletal muscle in vivo by 87Rb nuclear magnetic resonance spectroscopy: implications for the measurement of cation transport activity in vivo.
    Syme PD; Dixon RM; Allis JL; Aronson JK; Grahame-Smith DG; Radda GK
    Clin Sci (Lond); 1990 Mar; 78(3):303-9. PubMed ID: 2156650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of imposed serum deprivation on growth of the mouse 3T3 cell. Dissociation from changes in potassium ion transport as measured from [86Rb)rubidium ion uptake.
    Tupper JT; Zografos L
    Biochem J; 1978 Sep; 174(3):1063-5. PubMed ID: 728075
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The suppression of the late after-potential in rubidium-containing frog muscle fibers.
    Hellam DC; Goldstein DA; Peachey LD; Freygang WH
    J Gen Physiol; 1965 Jul; 48(6):1003-10. PubMed ID: 5855505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative electron probe microanalysis of acetylcholinesterase activity in rat brain sections.
    Pogorelov AG; Budantsev AYu ; Pogorelova VN
    J Histochem Cytochem; 1993 Dec; 41(12):1795-800. PubMed ID: 8245428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Palpitations, potassium and the pump.
    Weiss JN
    J Physiol; 2015 Mar; 593(6):1387-8. PubMed ID: 25772294
    [No Abstract]   [Full Text] [Related]  

  • 52. Rubidium as a probe for function and transport of potassium in the yeast Candida utilis NCYC 321, grown in chemostat culture.
    Aiking H; Tempest DW
    Arch Microbiol; 1977 Nov; 115(2):215-21. PubMed ID: 563708
    [No Abstract]   [Full Text] [Related]  

  • 53. Assay of acetylcholinesterase activity and elemental composition in brain compartments by electron probe microanalysis.
    Pogorelov A; Budantsev A; Pogorelova V; Mizin I
    Brain Res Brain Res Protoc; 1997 Feb; 1(1):44-8. PubMed ID: 9385046
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy dispersive x-ray microanalysis of the electrolytes in biological bulk specimen. II. Age-dependent alterations in the monovalent ion contents of cell nucleus and cytoplasm in rat liver and brain cells.
    Pieri C; Nagy IZ; Nagy VZ; Giuli C; Bertoni-Freddari C
    J Ultrastruct Res; 1977 Jun; 59(3):320-31. PubMed ID: 864827
    [No Abstract]   [Full Text] [Related]  

  • 55. Chronic dietary choline influences the permeability of nerve cell membranes as revealed by in vivo Rb+ uptake and release.
    Pieri C; Giuli C; Marcheselli F
    Arch Gerontol Geriatr; 1989 Jul; 9(1):87-95. PubMed ID: 2675791
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [On the behavior of the urinary excretion of K-42 and Rb-86 in guinea pigs. Experimental research].
    MUSSA GC
    Minerva Pediatr; 1962 May; 14():623-6. PubMed ID: 14477566
    [No Abstract]   [Full Text] [Related]  

  • 57. Ischemic areas in hypertrophic Langendorff rat hearts visualized by NADH videofluorimetry.
    Ashruf JF; Ince C; Bruining HA; Hulsmann WC
    Adv Exp Med Biol; 1994; 345():259-62. PubMed ID: 8079716
    [No Abstract]   [Full Text] [Related]  

  • 58. In vitro incorporation of Rb-86 by the erythrocyte as an index of intracellular potassium. Studies in patients with renal insufficiency.
    HENEGAR GC; RANSDELL AM; ROECKER BN; COOPER JA; PRESTON FW
    Surg Forum; 1960; 10():366-9. PubMed ID: 14401024
    [No Abstract]   [Full Text] [Related]  

  • 59. The physiological behavior of rubidium and cesium in relation to that of potassium.
    RELMAN AS
    Yale J Biol Med; 1956 Dec; 29(3):248-62. PubMed ID: 13409924
    [No Abstract]   [Full Text] [Related]  

  • 60. Effect of K, Rb, diamox, and aldosterone on 86-Rb retention in the rat.
    Chertok RJ; Lake S; Hitchman JW
    Health Phys; 1968 Dec; 15(6):519-26. PubMed ID: 5688319
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.