These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23136815)

  • 1. Autonomy in action: linking the act of looking to memory formation in infancy via dynamic neural fields.
    Perone S; Spencer JP
    Cogn Sci; 2013; 37(1):1-60. PubMed ID: 23136815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Dependency and the Structure of Early Looking.
    Messinger DS; Mattson WI; Todd JT; Gangi DN; Myers ND; Bahrick LE
    PLoS One; 2017; 12(1):e0169458. PubMed ID: 28076362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prepulse inhibition predicts working memory performance whilst startle habituation predicts spatial reference memory retention in C57BL/6 mice.
    Singer P; Hauser J; Llano Lopez LH; Peleg-Raibstein D; Feldon J; Gargiulo PA; Yee BK
    Behav Brain Res; 2013 Apr; 242():166-77. PubMed ID: 23276606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of performance on an automated visual recognition memory task in 7.5-month-old infants.
    Dzwilewski KLC; Merced-Nieves FM; Aguiar A; Korrick SA; Schantz SL
    Neurotoxicol Teratol; 2020; 81():106904. PubMed ID: 32485220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The comparator model of infant visual habituation and dishabituation: recent insights.
    Kavšek M
    Dev Psychobiol; 2013 Dec; 55(8):793-808. PubMed ID: 22975795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the episodic buffer in working memory for language processing.
    Rudner M; Rönnberg J
    Cogn Process; 2008 Mar; 9(1):19-28. PubMed ID: 17917753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive short-term and long-term memory processes in spatial habituation.
    Sanderson DJ; Bannerman DM
    J Exp Psychol Anim Behav Process; 2011 Apr; 37(2):189-99. PubMed ID: 21319917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal networks habituate as novelty accumulates.
    Murty VP; Ballard IC; Macduffie KE; Krebs RM; Adcock RA
    Learn Mem; 2013 Mar; 20(4):229-35. PubMed ID: 23512939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural mechanisms of semantic interference and false recognition in short-term memory.
    Atkins AS; Reuter-Lorenz PA
    Neuroimage; 2011 Jun; 56(3):1726-34. PubMed ID: 21349335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infant visual attention and object recognition.
    Reynolds GD
    Behav Brain Res; 2015 May; 285():34-43. PubMed ID: 25596333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dynamic neural field model of visual working memory and change detection.
    Johnson JS; Spencer JP; Luck SJ; Schöner G
    Psychol Sci; 2009 May; 20(5):568-77. PubMed ID: 19368698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The co-development of looking dynamics and discrimination performance.
    Perone S; Spencer JP
    Dev Psychol; 2014 Mar; 50(3):837-52. PubMed ID: 23957821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherence and recurrency: maintenance, control and integration in working memory.
    Wolters G; Raffone A
    Cogn Process; 2008 Mar; 9(1):1-17. PubMed ID: 17901994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of infant visual foraging.
    Robertson SS; Guckenheimer J; Masnick AM; Bacher LF
    Dev Sci; 2004 Apr; 7(2):194-200. PubMed ID: 15320379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural correlates of visual working memory encoding: a time-resolved fMRI study.
    Todd JJ; Han SW; Harrison S; Marois R
    Neuropsychologia; 2011 May; 49(6):1527-36. PubMed ID: 21315091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stronger neural dynamics capture changes in infants' visual working memory capacity over development.
    Perone S; Simmering VR; Spencer JP
    Dev Sci; 2011 Nov; 14(6):1379-92. PubMed ID: 22010897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory.
    Winters BD; Bussey TJ
    J Neurosci; 2005 Jan; 25(1):52-61. PubMed ID: 15634766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An interacting systems model of infant habituation.
    Sirois S; Mareschal D
    J Cogn Neurosci; 2004 Oct; 16(8):1352-62. PubMed ID: 15509383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4 Tesla.
    Tomasi D; Ernst T; Caparelli EC; Chang L
    Hum Brain Mapp; 2006 Aug; 27(8):694-705. PubMed ID: 16404736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early top-down control of visual processing predicts working memory performance.
    Rutman AM; Clapp WC; Chadick JZ; Gazzaley A
    J Cogn Neurosci; 2010 Jun; 22(6):1224-34. PubMed ID: 19413473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.