These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
567 related articles for article (PubMed ID: 23136923)
1. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. Wang C; Wang JL; Lin W J Am Chem Soc; 2012 Dec; 134(48):19895-908. PubMed ID: 23136923 [TBL] [Abstract][Full Text] [Related]
2. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Wang C; Xie Z; deKrafft KE; Lin W J Am Chem Soc; 2011 Aug; 133(34):13445-54. PubMed ID: 21780787 [TBL] [Abstract][Full Text] [Related]
3. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis. Drake T; Ji P; Lin W Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753 [TBL] [Abstract][Full Text] [Related]
5. Isoreticular chiral metal-organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. Song F; Wang C; Falkowski JM; Ma L; Lin W J Am Chem Soc; 2010 Nov; 132(43):15390-8. PubMed ID: 20936862 [TBL] [Abstract][Full Text] [Related]
6. Bipyridine- and phenanthroline-based metal-organic frameworks for highly efficient and tandem catalytic organic transformations via directed C-H activation. Manna K; Zhang T; Greene FX; Lin W J Am Chem Soc; 2015 Feb; 137(7):2665-73. PubMed ID: 25640998 [TBL] [Abstract][Full Text] [Related]
7. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates. Nakka L; Molinari JE; Wachs IE J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071 [TBL] [Abstract][Full Text] [Related]
8. Postsynthetic metalation of bipyridyl-containing metal-organic frameworks for highly efficient catalytic organic transformations. Manna K; Zhang T; Lin W J Am Chem Soc; 2014 May; 136(18):6566-9. PubMed ID: 24758529 [TBL] [Abstract][Full Text] [Related]
9. Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. Wang C; deKrafft KE; Lin W J Am Chem Soc; 2012 May; 134(17):7211-4. PubMed ID: 22486151 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, structures, and properties of two three-dimensional metal-organic frameworks, based on concurrent ligand extension. Shi D; Ren Y; Jiang H; Cai B; Lu J Inorg Chem; 2012 Jun; 51(12):6498-506. PubMed ID: 22670898 [TBL] [Abstract][Full Text] [Related]
11. Turning on red and near-infrared phosphorescence in octahedral complexes with metalated quinones. Damas A; Ventura B; Moussa J; Degli Esposti A; Chamoreau LM; Barbieri A; Amouri H Inorg Chem; 2012 Feb; 51(3):1739-50. PubMed ID: 22260200 [TBL] [Abstract][Full Text] [Related]
12. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation. Wasylenko DJ; Ganesamoorthy C; Henderson MA; Koivisto BD; Osthoff HD; Berlinguette CP J Am Chem Soc; 2010 Nov; 132(45):16094-106. PubMed ID: 20977265 [TBL] [Abstract][Full Text] [Related]
13. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. Schley ND; Blakemore JD; Subbaiyan NK; Incarvito CD; D'Souza F; Crabtree RH; Brudvig GW J Am Chem Soc; 2011 Jul; 133(27):10473-81. PubMed ID: 21671679 [TBL] [Abstract][Full Text] [Related]
14. Pyrazolate-based cobalt(II)-containing metal-organic frameworks in heterogeneous catalytic oxidation reactions: elucidating the role of entatic states for biomimetic oxidation processes. Tonigold M; Lu Y; Mavrandonakis A; Puls A; Staudt R; Möllmer J; Sauer J; Volkmer D Chemistry; 2011 Jul; 17(31):8671-95. PubMed ID: 21688331 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of the catalytic activity of [Mn(II)(bpy)2Cl2] and [Mn2(III/IV)(mu-O)2(bpy)4](ClO4)3 in the H2O2 induced oxidation of organic dyes in carbonate buffered aqueous solution. Rothbart S; Ember E; van Eldik R Dalton Trans; 2010 Apr; 39(13):3264-72. PubMed ID: 20449456 [TBL] [Abstract][Full Text] [Related]
17. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Serna P; Gates BC Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. Ogo S; Kabe R; Hayashi H; Harada R; Fukuzumi S Dalton Trans; 2006 Oct; (39):4657-63. PubMed ID: 17028673 [TBL] [Abstract][Full Text] [Related]
19. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3. Mondloch JE; Wang Q; Frenkel AI; Finke RG J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521 [TBL] [Abstract][Full Text] [Related]
20. Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. Wei LQ; Ye BH ACS Appl Mater Interfaces; 2019 Nov; 11(44):41448-41457. PubMed ID: 31604013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]