BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 23136943)

  • 1. Changes of the phenol-degrading bacterial community during the decomposition of submersed Platanus acerifolia leaves.
    Ramió-Pujol S; Bañeras L; Artigas J; Romaní AM
    FEMS Microbiol Lett; 2013 Jan; 338(2):184-91. PubMed ID: 23136943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput screening for a moderately halophilic phenol-degrading strain and its salt tolerance response.
    Lu ZY; Guo XJ; Li H; Huang ZZ; Lin KF; Liu YD
    Int J Mol Sci; 2015 May; 16(6):11834-48. PubMed ID: 26020478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis.
    Basile LA; Erijman L
    Appl Microbiol Biotechnol; 2008 Apr; 78(5):863-72. PubMed ID: 18202843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance of phenol hydroxylase genotypes at high diversity in bioreactors exposed to step increases in phenol loading.
    Basile LA; Erijman L
    FEMS Microbiol Ecol; 2010 Aug; 73(2):336-48. PubMed ID: 20500527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system.
    Zhang X; Gao P; Chao Q; Wang L; Senior E; Zhao L
    FEMS Microbiol Lett; 2004 Aug; 237(2):369-75. PubMed ID: 15321685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge.
    Watanabe K; Teramoto M; Futamata H; Harayama S
    Appl Environ Microbiol; 1998 Nov; 64(11):4396-402. PubMed ID: 9797297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity shift in bacterial phenol hydroxylases driven by alkyl-phenols in oil refinery wastewaters.
    Harzallah B; Bousseboua H; Jouanneau Y
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14376-14386. PubMed ID: 28432622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the dynamic of microbial communities during leaf decomposition in a low-order stream by microscopic and molecular techniques.
    Duarte S; Pascoal C; Alves A; Correia A; Cássio F
    Microbiol Res; 2010 Jul; 165(5):351-62. PubMed ID: 19720514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis.
    Jiang Y; Wen J; Bai J; Jia X; Hu Z
    J Hazard Mater; 2007 Aug; 147(1-2):672-6. PubMed ID: 17597295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes.
    Merimaa M; Heinaru E; Liivak M; Vedler E; Heinaru A
    Arch Microbiol; 2006 Oct; 186(4):287-96. PubMed ID: 16906406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes.
    Tuan NN; Hsieh HC; Lin YW; Huang SL
    Bioresour Technol; 2011 Mar; 102(5):4232-40. PubMed ID: 21227686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation.
    Futamata H; Harayama S; Watanabe K
    Appl Environ Microbiol; 2001 Oct; 67(10):4671-7. PubMed ID: 11571171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial degradation of airborne phenol in the phyllosphere.
    Sandhu A; Halverson LJ; Beattie GA
    Environ Microbiol; 2007 Feb; 9(2):383-92. PubMed ID: 17222136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine scale patterns in microbial extracellular enzyme activity during leaf litter decomposition in a stream and its floodplain.
    Smart KA; Jackson CR
    Microb Ecol; 2009 Oct; 58(3):591-8. PubMed ID: 19319588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments.
    Futamata H; Harayama S; Hiraishi A; Watanabe K
    Appl Microbiol Biotechnol; 2003 Jan; 60(5):594-600. PubMed ID: 12536262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of different phenol hydroxylase-possessing phenol-degrading pseudomonads by kinetic parameters.
    Viggor S; Heinaru E; Künnapas A; Heinaru A
    Biodegradation; 2008 Sep; 19(5):759-69. PubMed ID: 18283541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area.
    Heinaru E; Merimaa M; Viggor S; Lehiste M; Leito I; Truu J; Heinaru A
    FEMS Microbiol Ecol; 2005 Feb; 51(3):363-73. PubMed ID: 16329884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area.
    Gandolfi I; Canedoli C; Imperato V; Tagliaferri I; Gkorezis P; Vangronsveld J; Padoa Schioppa E; Papacchini M; Bestetti G; Franzetti A
    Environ Pollut; 2017 Jan; 220(Pt A):650-658. PubMed ID: 27745913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere.
    Toyama T; Yu N; Kumada H; Sei K; Ike M; Fujita M
    J Biosci Bioeng; 2006 Apr; 101(4):346-53. PubMed ID: 16716944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.