These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23137035)

  • 1. Chemically doped radial junction characteristics in silicon nanowires.
    Ng MF; Tong SW
    Nano Lett; 2012 Dec; 12(12):6133-8. PubMed ID: 23137035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of silicon nanowire approaching the bulk limit.
    Ng MF; Sullivan MB; Tong SW; Wu P
    Nano Lett; 2011 Nov; 11(11):4794-9. PubMed ID: 21942398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.
    Yu L; Fortuna F; O'Donnell B; Jeon T; Foldyna M; Picardi G; Roca i Cabarrocas P
    Nano Lett; 2012 Aug; 12(8):4153-8. PubMed ID: 22822909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics.
    Zhang S; Zhang T; Cao L; Liu Z; Wang J; Xu J; Chen K; Yu L
    Opt Express; 2019 Dec; 27(26):37248-37256. PubMed ID: 31878508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping.
    Dong G; Liu F; Liu J; Zhang H; Zhu M
    Nanoscale Res Lett; 2013 Dec; 8(1):544. PubMed ID: 24369781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segregation behaviors and radial distribution of dopant atoms in silicon nanowires.
    Fukata N; Ishida S; Yokono S; Takiguchi R; Chen J; Sekiguchi T; Murakami K
    Nano Lett; 2011 Feb; 11(2):651-6. PubMed ID: 21261289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.
    Sun Z; Hazut O; Huang BC; Chiu YP; Chang CS; Yerushalmi R; Lauhon LJ; Seidman DN
    Nano Lett; 2016 Jul; 16(7):4490-500. PubMed ID: 27351447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nanowires: electron holography studies of doped p-n junctions and biased Schottky barriers.
    He K; Cho JH; Jung Y; Picraux ST; Cumings J
    Nanotechnology; 2013 Mar; 24(11):115703. PubMed ID: 23455354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires.
    de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M
    Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing individual radial junction solar cells over millions on VLS-grown silicon nanowires.
    Yu L; Rigutti L; Tchernycheva M; Misra S; Foldyna M; Picardi G; Roca i Cabarrocas P
    Nanotechnology; 2013 Jul; 24(27):275401. PubMed ID: 23764545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of dopant-pair defects and doping efficiency in B- and P-doped silicon nanowires.
    Moon CY; Lee WJ; Chang KJ
    Nano Lett; 2008 Oct; 8(10):3086-91. PubMed ID: 18729413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Band-gap engineering of halogenated silicon nanowires through molecular doping.
    de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M
    J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance.
    Liang Z; Su M; Wang H; Gong Y; Xie F; Gong L; Meng H; Liu P; Chen H; Xie W; Chen J
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5830-6. PubMed ID: 25711433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confinement and surface effects in B and P doping of silicon nanowires.
    Leao CR; Fazzio A; da Silva AJ
    Nano Lett; 2008 Jul; 8(7):1866-71. PubMed ID: 18529083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abrupt degenerately-doped silicon nanowire tunnel junctions.
    Cordoba C; Teitsworth TS; Yang M; Cahoon JF; Kavanagh KL
    Nanotechnology; 2020 Oct; 31(41):415708. PubMed ID: 32442995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.
    Yu L; O'Donnell B; Foldyna M; Roca i Cabarrocas P
    Nanotechnology; 2012 May; 23(19):194011. PubMed ID: 22539188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.
    Hazut O; Agarwala A; Amit I; Subramani T; Zaidiner S; Rosenwaks Y; Yerushalmi R
    ACS Nano; 2012 Nov; 6(11):10311-8. PubMed ID: 23083376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium insertion in silicon nanowires: an ab initio study.
    Zhang Q; Zhang W; Wan W; Cui Y; Wang E
    Nano Lett; 2010 Sep; 10(9):3243-9. PubMed ID: 20681548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells.
    Lee YJ; Yao YC; Yang CH
    Opt Express; 2013 Jan; 21 Suppl 1():A7-14. PubMed ID: 23389277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-plane epitaxial growth of silicon nanowires and junction formation on Si(100) substrates.
    Yu L; Xu M; Xu J; Xue Z; Fan Z; Picardi G; Fortuna F; Wang J; Xu J; Shi Y; Chen K; Roca i Cabarrocas P
    Nano Lett; 2014 Nov; 14(11):6469-74. PubMed ID: 25343717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.