BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23137275)

  • 1. Ambient low temperature plasma etching of polymer films for secondary ion mass spectrometry molecular depth profiling.
    Muramoto S; Staymates ME; Brewer TM; Gillen G
    Anal Chem; 2012 Dec; 84(24):10763-7. PubMed ID: 23137275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry.
    Wagner MS
    Anal Chem; 2005 Feb; 77(3):911-22. PubMed ID: 15679361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth profiling cross-linked poly(methyl methacrylate) films: a time-of-flight secondary ion mass spectrometry approach.
    Naderi-Gohar S; Huang KM; Wu Y; Lau WM; Nie HY
    Rapid Commun Mass Spectrom; 2017 Feb; 31(4):381-388. PubMed ID: 27933719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Temperature Plasma for the Preparation of Crater Walls for Compositional Depth Profiling of Thin Inorganic Multilayers.
    Muramoto S; Bennett J
    Surf Interface Anal; 2017 Jun; 49(6):515-521. PubMed ID: 28584389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-13 labeled polymers: an alternative tracer for depth profiling of polymer films and multilayers using secondary ion mass spectrometry.
    Harton SE; Stevie FA; Zhu Z; Ade H
    Anal Chem; 2006 May; 78(10):3452-60. PubMed ID: 16689549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.
    D'Sa RA; Meenan BJ
    Langmuir; 2010 Feb; 26(3):1894-903. PubMed ID: 19795890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of enhanced mobility at the free surface of supported polymer films by in situ variable-temperature time-of-flight-secondary ion mass spectrometry.
    Fu Y; Lau YT; Weng LT; Ng KM; Chan CM
    Anal Chem; 2013 Nov; 85(22):10725-32. PubMed ID: 24106990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise and fast secondary ion mass spectrometry depth profiling of polymer materials with large Ar cluster ion beams.
    Ninomiya S; Ichiki K; Yamada H; Nakata Y; Seki T; Aoki T; Matsuo J
    Rapid Commun Mass Spectrom; 2009 Jun; 23(11):1601-6. PubMed ID: 19399762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limits of detection for time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS): detection of low amounts of adsorbed protein.
    Wagner MS; McArthur SL; Shen M; Horbett TA; Castner DG
    J Biomater Sci Polym Ed; 2002; 13(4):407-28. PubMed ID: 12160301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact energy dependence of SF5+-induced damage in poly(methyl methacrylate) studied using time-of-flight secondary ion mass spectrometry.
    Wagner MS
    Anal Chem; 2004 Mar; 76(5):1264-72. PubMed ID: 14987080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced surface sensitivity in secondary ion mass spectrometric analysis of organic thin films using size-selected Ar gas-cluster ion projectiles.
    Tanaka M; Moritani K; Hirota T; Toyoda N; Yamada I; Inui N; Mochiji K
    Rapid Commun Mass Spectrom; 2010 May; 24(10):1405-10. PubMed ID: 20411579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the temperature and beam parameters on depth profiles in X-ray photoelectron spectrometry and secondary ion mass spectrometry under C60(+)-Ar(+) cosputtering.
    Liao HY; Tsai MH; Kao WL; Kuo DY; Shyue JJ
    Anal Chim Acta; 2014 Dec; 852():129-36. PubMed ID: 25441889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of free radicals on the surface of plasma polymer for the initiation of a polymerization reaction.
    Khelifa F; Ershov S; Habibi Y; Snyders R; Dubois P
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11569-77. PubMed ID: 24143897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of lithium-ion distributions in nanostructured block polymer electrolyte thin films by X-ray photoelectron spectroscopy depth profiling.
    Gilbert JB; Luo M; Shelton CK; Rubner MF; Cohen RE; Epps TH
    ACS Nano; 2015 Jan; 9(1):512-20. PubMed ID: 25526511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of composition C4 explosives using time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy.
    Mahoney CM; Fahey AJ; Steffens KL; Benner BA; Lareau RT
    Anal Chem; 2010 Sep; 82(17):7237-48. PubMed ID: 20698494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow interior structure of spin-coated polymer thin films revealed by ToF-SIMS three-dimensional imaging.
    Ren X; Weng LT; Chan CM; Ng KM
    Anal Chem; 2012 Oct; 84(20):8497-504. PubMed ID: 22963510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic/molecular depth profiling of nanometric-metallized polymer thin films by secondary ion mass spectrometry.
    Téllez H; Vadillo JM; Laserna JJ
    Rapid Commun Mass Spectrom; 2010 Feb; 24(4):463-8. PubMed ID: 20069686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular depth profiling of sucrose films: a comparative study of C60(n+) ions and traditional Cs(+) and O2(+) ions.
    Zhu Z; Nachimuthu P; Lea AS
    Anal Chem; 2009 Oct; 81(20):8272-9. PubMed ID: 19769372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin-streptavidin interaction for biological applications.
    Lagunas A; Comelles J; Martínez E; Samitier J
    Langmuir; 2010 Sep; 26(17):14154-61. PubMed ID: 20712344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ToF-SIMS Depth Profiling of PS-b-PMMA Block Copolymers Using Ar
    Terlier T; Zappalà G; Marie C; Leonard D; Barnes JP; Licciardello A
    Anal Chem; 2017 Jul; 89(13):6984-6991. PubMed ID: 28617583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.