These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23137783)

  • 1. Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.
    Mohammadian E; Junin R; Rahmani O; Idris AK
    Ultrasonics; 2013 Feb; 53(2):607-14. PubMed ID: 23137783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.
    Hamidi H; Mohammadian E; Junin R; Rafati R; Manan M; Azdarpour A; Junid M
    Ultrasonics; 2014 Feb; 54(2):655-62. PubMed ID: 24075416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types.
    Naderi K; Babadagli T
    Ultrason Sonochem; 2010 Mar; 17(3):500-8. PubMed ID: 19932981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-assisted CO
    Hamidi H; Sharifi Haddad A; Mohammadian E; Rafati R; Azdarpour A; Ghahri P; Ombewa P; Neuert T; Zink A
    Ultrason Sonochem; 2017 Mar; 35(Pt A):243-250. PubMed ID: 27720591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on frequency optimization and mechanism of ultrasonic waves assisting water flooding in low-permeability reservoirs.
    Li X; Pu C; Chen X; Huang F; Zheng H
    Ultrason Sonochem; 2021 Jan; 70():105291. PubMed ID: 32763749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual analysis of immiscible displacement processes in porous media under ultrasound effect.
    Naderi K; Babadagli T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056323. PubMed ID: 21728663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immiscible displacement of oil by water in consolidated porous media due to capillary imbibition under ultrasonic waves.
    Hamida T; Babadagli T
    J Acoust Soc Am; 2007 Sep; 122(3):1539. PubMed ID: 17927413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended model for ultrasonic-based enhanced oil recovery with experimental validation.
    Mohsin M; Meribout M
    Ultrason Sonochem; 2015 Mar; 23():413-23. PubMed ID: 25219873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of bioemulsifier mediated Microbial Enhanced Oil Recovery using sand pack column.
    Suthar H; Hingurao K; Desai A; Nerurkar A
    J Microbiol Methods; 2008 Oct; 75(2):225-30. PubMed ID: 18625271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ultrasonic waves on the nucleation of pure water and degassed water.
    Yu D; Liu B; Wang B
    Ultrason Sonochem; 2012 May; 19(3):459-63. PubMed ID: 21925917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle Assisted EOR during Sand-Pack Flooding: Electrical Tomography to Assess Flow Dynamics and Oil Recovery.
    Nwufoh P; Hu Z; Wen D; Wang M
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31295849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ultrasound radiation duration on emulsification and demulsification of paraffin oil and surfactant solution/brine using Hele-shaw models.
    Hamidi H; Mohammadian E; Asadullah M; Azdarpour A; Rafati R
    Ultrason Sonochem; 2015 Sep; 26():428-436. PubMed ID: 25616638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic study on the effect of ultrasound on lipase-catalyzed hydrolysis of soy oil: Study of the interfacial area and the initial rates.
    Huang J; Liu Y; Song Z; Jin Q; Liu Y; Wang X
    Ultrason Sonochem; 2010 Mar; 17(3):521-5. PubMed ID: 20006939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ultrasonic waves on the interfacial forces between oil and water.
    Hamida T; Babadagli T
    Ultrason Sonochem; 2008 Apr; 15(4):274-278. PubMed ID: 17981069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation.
    Abramov VO; Abramova AV; Bayazitov VM; Mullakaev MS; Marnosov AV; Ildiyakov AV
    Ultrason Sonochem; 2017 Mar; 35(Pt A):389-396. PubMed ID: 27789178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study on viscosity reduction for residual oil by ultrasonic.
    Huang X; Zhou C; Suo Q; Zhang L; Wang S
    Ultrason Sonochem; 2018 Mar; 41():661-669. PubMed ID: 29137798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control.
    Rezaei Dehshibi R; Mohebbi A; Riazi M; Niakousari M
    Ultrason Sonochem; 2018 Jul; 45():204-212. PubMed ID: 29705314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of recent high-power ultrasonic transducers for Near-well ultrasonic processing technology.
    Wang Z; Xu Y
    Ultrason Sonochem; 2017 Jul; 37():536-541. PubMed ID: 28427666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on the emulsification of oil by power ultrasound.
    Cucheval A; Chow RC
    Ultrason Sonochem; 2008 Jul; 15(5):916-20. PubMed ID: 18374617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic cavitation induced water in vegetable oil emulsion droplets--a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization.
    Sivakumar M; Towata A; Yasui K; Tuziuti T; Kozuka T; Iida Y; Maiorov MM; Blums E; Bhattacharya D; Sivakumar N; Ashok M
    Ultrason Sonochem; 2012 May; 19(3):652-8. PubMed ID: 22113061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.