These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 23137797)
1. Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins. Morris VK; Kwan AH; Sunde M J Mol Biol; 2013 Jan; 425(2):244-56. PubMed ID: 23137797 [TBL] [Abstract][Full Text] [Related]
2. Backbone and sidechain ¹H, ¹³C and ¹⁵N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Morris VK; Kwan AH; Mackay JP; Sunde M Biomol NMR Assign; 2012 Apr; 6(1):83-6. PubMed ID: 21845363 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei. Winandy L; Hilpert F; Schlebusch O; Fischer R Sci Rep; 2018 Aug; 8(1):12033. PubMed ID: 30104653 [TBL] [Abstract][Full Text] [Related]
4. Soluble Expression and Efficient Purification of Recombinant Class I Hydrophobin DewA. Ahn SO; Lim HD; You SH; Cheong DE; Kim GJ Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360609 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins. Fokina O; Fenchel A; Winandy L; Fischer R Appl Environ Microbiol; 2016 Nov; 82(21):6395-6402. PubMed ID: 27565614 [TBL] [Abstract][Full Text] [Related]
6. Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation. Morris VK; Ren Q; Macindoe I; Kwan AH; Byrne N; Sunde M J Biol Chem; 2011 May; 286(18):15955-63. PubMed ID: 21454575 [TBL] [Abstract][Full Text] [Related]
7. Recombinant production of an Aspergillus nidulans class I hydrophobin (DewA) in Hypocrea jecorina (Trichoderma reesei) is promoter-dependent. Schmoll M; Seibel C; Kotlowski C; Wöllert Genannt Vendt F; Liebmann B; Kubicek CP Appl Microbiol Biotechnol; 2010 Sep; 88(1):95-103. PubMed ID: 20567818 [TBL] [Abstract][Full Text] [Related]
8. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. Kwan AH; Macindoe I; Vukasin PV; Morris VK; Kass I; Gupte R; Mark AE; Templeton MD; Mackay JP; Sunde M J Mol Biol; 2008 Oct; 382(3):708-20. PubMed ID: 18674544 [TBL] [Abstract][Full Text] [Related]
9. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q; Kwan AH; Sunde M Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020 [TBL] [Abstract][Full Text] [Related]
10. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738 [TBL] [Abstract][Full Text] [Related]
11. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface. Grünbacher A; Throm T; Seidel C; Gutt B; Röhrig J; Strunk T; Vincze P; Walheim S; Schimmel T; Wenzel W; Fischer R PLoS One; 2014; 9(4):e94546. PubMed ID: 24722460 [TBL] [Abstract][Full Text] [Related]
12. Formation of amphipathic amyloid monolayers from fungal hydrophobin proteins. Morris VK; Sunde M Methods Mol Biol; 2013; 996():119-29. PubMed ID: 23504421 [TBL] [Abstract][Full Text] [Related]
13. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. Lo VC; Ren Q; Pham CL; Morris VK; Kwan AH; Sunde M Nanomaterials (Basel); 2014 Sep; 4(3):827-843. PubMed ID: 28344251 [TBL] [Abstract][Full Text] [Related]
14. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Kershaw MJ; Talbot NJ Fungal Genet Biol; 1998 Feb; 23(1):18-33. PubMed ID: 9501475 [TBL] [Abstract][Full Text] [Related]
15. dewA encodes a fungal hydrophobin component of the Aspergillus spore wall. Stringer MA; Timberlake WE Mol Microbiol; 1995 Apr; 16(1):33-44. PubMed ID: 7651135 [TBL] [Abstract][Full Text] [Related]
16. Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus. Longobardi S; Picone D; Ercole C; Spadaccini R; De Stefano L; Rea I; Giardina P Biomacromolecules; 2012 Mar; 13(3):743-50. PubMed ID: 22292968 [TBL] [Abstract][Full Text] [Related]
17. Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered β-sheet core amidst structural heterogeneity. Morris VK; Linser R; Wilde KL; Duff AP; Sunde M; Kwan AH Angew Chem Int Ed Engl; 2012 Dec; 51(50):12621-5. PubMed ID: 23125123 [TBL] [Abstract][Full Text] [Related]
18. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119 [TBL] [Abstract][Full Text] [Related]
19. Behavior of Trichoderma reesei hydrophobins in solution: interactions, dynamics, and multimer formation. Szilvay GR; Nakari-Setälä T; Linder MB Biochemistry; 2006 Jul; 45(28):8590-8. PubMed ID: 16834333 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for rodlet assembly in fungal hydrophobins. Kwan AH; Winefield RD; Sunde M; Matthews JM; Haverkamp RG; Templeton MD; Mackay JP Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3621-6. PubMed ID: 16537446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]