These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 23138069)
1. Lowering the applied potential during successive scratching/re-inoculation improves the performance of microbial anodes for microbial fuel cells. Ketep SF; Bergel A; Bertrand M; Achouak W; Fourest E Bioresour Technol; 2013 Jan; 127():448-55. PubMed ID: 23138069 [TBL] [Abstract][Full Text] [Related]
2. Forming microbial anodes with acetate addition decreases their capability to treat raw paper mill effluent. Ketep SF; Bergel A; Bertrand M; Barakat M; Achouak W; Fourest E Bioresour Technol; 2014 Jul; 164():285-91. PubMed ID: 24862005 [TBL] [Abstract][Full Text] [Related]
3. Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required. Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A Bioresour Technol; 2012 Jun; 114():334-41. PubMed ID: 22483348 [TBL] [Abstract][Full Text] [Related]
4. Power overshoot in two-chambered microbial fuel cell (MFC). Nien PC; Lee CY; Ho KC; Adav SS; Liu L; Wang A; Ren N; Lee DJ Bioresour Technol; 2011 Apr; 102(7):4742-6. PubMed ID: 21295969 [TBL] [Abstract][Full Text] [Related]
5. Tropical mangrove sediments as a natural inoculum for efficient electroactive biofilms. Salvin P; Roos C; Robert F Bioresour Technol; 2012 Sep; 120():45-51. PubMed ID: 22784952 [TBL] [Abstract][Full Text] [Related]
6. Sampling natural biofilms: a new route to build efficient microbial anodes. Erable B; Roncato MA; Achouak W; Bergel A Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134 [TBL] [Abstract][Full Text] [Related]
7. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Erable B; Bergel A Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272 [TBL] [Abstract][Full Text] [Related]
8. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. Katuri KP; Kamireddy S; Kavanagh P; Muhammad A; Conghaile PÓ; Kumar A; Saikaly PE; Leech D Water Res; 2020 Oct; 185():116284. PubMed ID: 32818731 [TBL] [Abstract][Full Text] [Related]
9. From microbial fuel cell (MFC) to microbial electrochemical snorkel (MES): maximizing chemical oxygen demand (COD) removal from wastewater. Erable B; Etcheverry L; Bergel A Biofouling; 2011 Mar; 27(3):319-26. PubMed ID: 21409654 [TBL] [Abstract][Full Text] [Related]
10. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Liu Y; Harnisch F; Fricke K; Schröder U; Climent V; Feliu JM Biosens Bioelectron; 2010 May; 25(9):2167-71. PubMed ID: 20189793 [TBL] [Abstract][Full Text] [Related]
11. Halotolerant bioanodes: The applied potential modulates the electrochemical characteristics, the biofilm structure and the ratio of the two dominant genera. Rousseau R; Santaella C; Bonnafous A; Achouak W; Godon JJ; Delia ML; Bergel A Bioelectrochemistry; 2016 Dec; 112():24-32. PubMed ID: 27429069 [TBL] [Abstract][Full Text] [Related]
12. Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells. Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A Phys Chem Chem Phys; 2012 Oct; 14(38):13332-43. PubMed ID: 22932946 [TBL] [Abstract][Full Text] [Related]
13. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Picot M; Lapinsonnière L; Rothballer M; Barrière F Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564 [TBL] [Abstract][Full Text] [Related]
14. Bioelectricity production using a new electrode in a microbial fuel cell. Ozkaya B; Akoglu B; Karadag D; Acı G; Taskan E; Hasar H Bioprocess Biosyst Eng; 2012 Sep; 35(7):1219-27. PubMed ID: 22388739 [TBL] [Abstract][Full Text] [Related]
15. Specific and efficient electrochemical selection of Geoalkalibacter subterraneus and Desulfuromonas acetoxidans in high current-producing biofilms. Pierra M; Carmona-Martínez AA; Trably E; Godon JJ; Bernet N Bioelectrochemistry; 2015 Dec; 106(Pt A):221-5. PubMed ID: 25717030 [TBL] [Abstract][Full Text] [Related]
16. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Sacco NJ; Figuerola EL; Pataccini G; Bonetto MC; Erijman L; Cortón E Bioresour Technol; 2012 Dec; 126():328-35. PubMed ID: 23142927 [TBL] [Abstract][Full Text] [Related]
17. Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Li C; Ding L; Cui H; Zhang L; Xu K; Ren H Bioresour Technol; 2012 Jul; 116():459-65. PubMed ID: 22534369 [TBL] [Abstract][Full Text] [Related]
18. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Park DH; Zeikus JG Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting current production in microbial fuel cells using different industrial wastewaters. Velasquez-Orta SB; Head IM; Curtis TP; Scott K Bioresour Technol; 2011 Apr; 102(8):5105-12. PubMed ID: 21345669 [TBL] [Abstract][Full Text] [Related]
20. Comparison in performance of sediment microbial fuel cells according to depth of embedded anode. An J; Kim B; Nam J; Ng HY; Chang IS Bioresour Technol; 2013 Jan; 127():138-42. PubMed ID: 23131634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]