These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 23138118)
1. Generation of induced pluripotent stem cells from human amniotic fluid cells by reprogramming with two factors in feeder-free conditions. Li Q; Fan Y; Sun X; Yu Y J Reprod Dev; 2013; 59(1):72-7. PubMed ID: 23138118 [TBL] [Abstract][Full Text] [Related]
2. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Jiang G; Di Bernardo J; Maiden MM; Villa-Diaz LG; Mabrouk OS; Krebsbach PH; O'Shea KS; Kunisaki SM Stem Cells Dev; 2014 Nov; 23(21):2613-25. PubMed ID: 25014361 [TBL] [Abstract][Full Text] [Related]
3. Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells. Febbraro F; Chen M; Denham M Methods Mol Biol; 2021; 2239():135-151. PubMed ID: 33226617 [TBL] [Abstract][Full Text] [Related]
4. Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells from Human Peripheral Blood Cells by Sendai Virus. Ye H; Wang Q Cell Physiol Biochem; 2018; 50(4):1318-1331. PubMed ID: 30355953 [TBL] [Abstract][Full Text] [Related]
5. Neural stem cells achieve and maintain pluripotency without feeder cells. Choi HW; Kim JS; Choi S; Jang HJ; Kim MJ; Choi Y; Schöler HR; Chung HM; Do JT PLoS One; 2011; 6(6):e21367. PubMed ID: 21738644 [TBL] [Abstract][Full Text] [Related]
7. Excluding Oct4 from Yamanaka Cocktail Unleashes the Developmental Potential of iPSCs. Velychko S; Adachi K; Kim KP; Hou Y; MacCarthy CM; Wu G; Schöler HR Cell Stem Cell; 2019 Dec; 25(6):737-753.e4. PubMed ID: 31708402 [TBL] [Abstract][Full Text] [Related]
8. Human iPS cell-derived fibroblast-like cells as feeder layers for iPS cell derivation and expansion. Du SH; Tay JC; Chen C; Tay FC; Tan WK; Li ZD; Wang S J Biosci Bioeng; 2015 Aug; 120(2):210-7. PubMed ID: 25622768 [TBL] [Abstract][Full Text] [Related]
9. Direct Reprogramming of Human Amniotic Fluid Stem Cells by OCT4 and Application in Repairing of Cerebral Ischemia Damage. Qin M; Chen R; Li H; Liang H; Xue Q; Li F; Chen Y; Zhang X Int J Biol Sci; 2016; 12(5):558-68. PubMed ID: 27019637 [TBL] [Abstract][Full Text] [Related]
10. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Tsai SY; Clavel C; Kim S; Ang YS; Grisanti L; Lee DF; Kelley K; Rendl M Stem Cells; 2010 Feb; 28(2):221-8. PubMed ID: 20014278 [TBL] [Abstract][Full Text] [Related]
12. NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Mai T; Markov GJ; Brady JJ; Palla A; Zeng H; Sebastiano V; Blau HM Nat Cell Biol; 2018 Aug; 20(8):900-908. PubMed ID: 30013107 [TBL] [Abstract][Full Text] [Related]
13. Intermediate Standstill Clones Trapped in the Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Zhang L; Wang Y; Zhang Y; Wang L; Huang H Cell Reprogram; 2020 Apr; 22(2):99-105. PubMed ID: 32182120 [TBL] [Abstract][Full Text] [Related]
14. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig. Choi KH; Park JK; Son D; Hwang JY; Lee DK; Ka H; Park J; Lee CK PLoS One; 2016; 11(6):e0158046. PubMed ID: 27336671 [TBL] [Abstract][Full Text] [Related]
15. Efficient induction of pluripotent stem cells from menstrual blood. Li Y; Li X; Zhao H; Feng R; Zhang X; Tai D; An G; Wen J; Tan J Stem Cells Dev; 2013 Apr; 22(7):1147-58. PubMed ID: 23151296 [TBL] [Abstract][Full Text] [Related]
16. Single transcription factor reprogramming of hair follicle dermal papilla cells to induced pluripotent stem cells. Tsai SY; Bouwman BA; Ang YS; Kim SJ; Lee DF; Lemischka IR; Rendl M Stem Cells; 2011 Jun; 29(6):964-71. PubMed ID: 21563278 [TBL] [Abstract][Full Text] [Related]
17. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions. Slamecka J; Salimova L; McClellan S; van Kelle M; Kehl D; Laurini J; Cinelli P; Owen L; Hoerstrup SP; Weber B Cell Cycle; 2016; 15(2):234-49. PubMed ID: 26654216 [TBL] [Abstract][Full Text] [Related]
18. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Rodríguez-Pizà I; Richaud-Patin Y; Vassena R; González F; Barrero MJ; Veiga A; Raya A; Izpisúa Belmonte JC Stem Cells; 2010 Jan; 28(1):36-44. PubMed ID: 19890879 [TBL] [Abstract][Full Text] [Related]
19. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Moschidou D; Mukherjee S; Blundell MP; Drews K; Jones GN; Abdulrazzak H; Nowakowska B; Phoolchund A; Lay K; Ramasamy TS; Cananzi M; Nettersheim D; Sullivan M; Frost J; Moore G; Vermeesch JR; Fisk NM; Thrasher AJ; Atala A; Adjaye J; Schorle H; De Coppi P; Guillot PV Mol Ther; 2012 Oct; 20(10):1953-67. PubMed ID: 22760542 [TBL] [Abstract][Full Text] [Related]