These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23138255)

  • 1. Low molecular weight gelators based on biosurfactants, cellobiose lipids by Cryptococcus humicola.
    Imura T; Kawamura D; Ishibashi Y; Morita T; Sato S; Fukuoka T; Kikkawa Y; Kitamoto D
    J Oleo Sci; 2012; 61(11):659-64. PubMed ID: 23138255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous gel formation from sodium salts of cellobiose lipids.
    Imura T; Yamamoto S; Yamashita C; Taira T; Minamikawa H; Morita T; Kitamoto D
    J Oleo Sci; 2014; 63(10):1005-10. PubMed ID: 25252740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fungicidal activity of cellobiose lipids from cultural fluid of yeast Cryptococcus humicola and Pseudozyma fusiformata].
    Kulakovskaia EV; Kulakovskaia TV; Golubev VI; Shashkov AS; Grachev AA; Nifant'ev NE
    Bioorg Khim; 2007; 33(1):167-71. PubMed ID: 17375672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Glycolipid Biosurfactants, cellobiose lipids, by Cryptococcus humicola JCM 1461 and their interfacial properties.
    Morita T; Ishibashi Y; Fukuoka T; Imura T; Sakai H; Abe M; Kitamoto D
    Biosci Biotechnol Biochem; 2011; 75(8):1597-9. PubMed ID: 21821939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding.
    Patra T; Pal A; Dey J
    J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Choice of the end functional groups in tri(p-phenylenevinylene) derivatives controls its physical gelation abilities.
    Samanta SK; Pal A; Bhattacharya S
    Langmuir; 2009 Aug; 25(15):8567-78. PubMed ID: 19402602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-cysteine-derived ambidextrous gelators of aromatic solvents and ethanol/water mixtures.
    Pal A; Dey J
    Langmuir; 2013 Feb; 29(7):2120-7. PubMed ID: 23343420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites.
    Mandal D; Kar T; Das PK
    Chemistry; 2014 Jan; 20(5):1349-58. PubMed ID: 24339266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of New D,L-Methionine-based Gelators.
    Suga S; Suzuki M; Hanabusa K
    J Oleo Sci; 2018; 67(5):539-549. PubMed ID: 29710040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instant gels from mixtures of amines and anhydrides at room temperature.
    Mahapatra RD; Dey J
    Colloids Surf B Biointerfaces; 2016 Nov; 147():422-433. PubMed ID: 27566227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of amphiphilic photoresponsive gelators for aromatic solvents.
    Rajaganesh R; Gopal A; Das TM; Ajayaghosh A
    Org Lett; 2012 Feb; 14(3):748-51. PubMed ID: 22251145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and structure-property relationships of amphiphilic organogelators.
    Mohmeyer N; Schmidt HW
    Chemistry; 2007; 13(16):4499-509. PubMed ID: 17348046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities.
    Kulakovskaya T; Shashkov A; Kulakovskaya E; Golubev W; Zinin A; Tsvetkov Y; Grachev A; Nifantiev N
    J Oleo Sci; 2009; 58(3):133-40. PubMed ID: 19202311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosyl-nucleoside lipids as low-molecular-weight gelators.
    Godeau G; Barthélémy P
    Langmuir; 2009 Aug; 25(15):8447-50. PubMed ID: 19348477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing the feasibility of using β-glucosidase entrapped in Lentikats and in sol-gel supports for cellobiose hydrolysis.
    Figueira JA; Sato HH; Fernandes P
    J Agric Food Chem; 2013 Jan; 61(3):626-34. PubMed ID: 23294439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.
    Morita T; Fukuoka T; Imura T; Kitamoto D
    FEMS Yeast Res; 2013 Feb; 13(1):44-9. PubMed ID: 22985214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycondensation and stabilization of chirally ordered molecular organogels derived from alkoxysilyl group- containing L-glutamide lipid.
    Takafuji M; Azuma N; Miyamoto K; Maeda S; Ihara H
    Langmuir; 2009 Aug; 25(15):8428-33. PubMed ID: 19292429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence for the gelation ability-structure correlation in sugar-based gelators.
    Gronwald O; Sakurai K; Luboradzki R; Kimura T; Shinkai S
    Carbohydr Res; 2001 Apr; 331(3):307-18. PubMed ID: 11383900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoreversible as well as thermoirreversible organogel formation by L-cysteine-based amphiphiles with poly(ethylene glycol) tail.
    Ghosh S; Das Mahapatra R; Dey J
    Langmuir; 2014 Feb; 30(6):1677-85. PubMed ID: 24460010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification.
    Debnath S; Shome A; Dutta S; Das PK
    Chemistry; 2008; 14(23):6870-81. PubMed ID: 18642259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.