These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23138540)

  • 1. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.
    Park SE; Kim S; Kim K; Joe HE; Jung B; Kim E; Kim W; Min BK; Hwang J
    Nanoscale; 2012 Dec; 4(24):7773-9. PubMed ID: 23138540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and properties of nano-confined poly(3-hexylthiophene) in nano-array/polymer hybrid ordered-bulk heterojunction solar cells.
    Foong TR; Chan KL; Hu X
    Nanoscale; 2012 Jan; 4(2):478-85. PubMed ID: 22095025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorene-based co-polymer with high hole mobility and device performance in bulk heterojunction organic solar cells.
    Watters DC; Yi H; Pearson AJ; Kingsley J; Iraqi A; Lidzey D
    Macromol Rapid Commun; 2013 Jul; 34(14):1157-62. PubMed ID: 23737100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of thiophene- and furan-appended methanofullerenes with poly(3-hexylthiophene) in organic solar cells.
    Troshin PA; Khakina EA; Egginger M; Goryachev AE; Troyanov SI; Fuchsbauer A; Peregudov AS; Lyubovskaya RN; Razumov VF; Sariciftci NS
    ChemSusChem; 2010 Mar; 3(3):356-66. PubMed ID: 20077464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Layer-by-layer deposition of rhenium-containing hyperbranched polymers and fabrication of photovoltaic cells.
    Tse CW; Man KY; Cheng KW; Mak CS; Chan WK; Yip CT; Liu ZT; Djurisić AB
    Chemistry; 2007; 13(1):328-35. PubMed ID: 17013959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical interfaces in organic solar cells and their influence on the open-circuit voltage.
    Potscavage WJ; Sharma A; Kippelen B
    Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diketopyrrolopyrrole-based acceptor polymers for photovoltaic application.
    Falzon MF; Zoombelt AP; Wienk MM; Janssen RA
    Phys Chem Chem Phys; 2011 May; 13(19):8931-9. PubMed ID: 21455539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement.
    Kirkeminde A; Retsch M; Wang Q; Xu G; Hui R; Wu J; Ren S
    Nanoscale; 2012 Aug; 4(15):4421-5. PubMed ID: 22695531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric nanostructures for broadband light trapping in organic solar cells.
    Raman A; Yu Z; Fan S
    Opt Express; 2011 Sep; 19(20):19015-26. PubMed ID: 21996842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron donor and acceptor spatial distribution in structured bulk heterojunction photovoltaic devices induced by periodic photopolymerization.
    Watanabe S; Fukuchi Y; Fukasawa M; Sassa T; Uchiyama M; Yamashita T; Matsumoto M; Aoyama T
    Langmuir; 2012 Jul; 28(28):10305-9. PubMed ID: 22712653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability.
    Zhou R; Zheng Y; Qian L; Yang Y; Holloway PH; Xue J
    Nanoscale; 2012 Jun; 4(11):3507-14. PubMed ID: 22543410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vinyl-type polynorbornenes with pendant PCBM: a novel acceptor for organic solar cells.
    Eo M; Lee S; Park MH; Lee MH; Yoo S; Do Y
    Macromol Rapid Commun; 2012 Jul; 33(13):1119-25. PubMed ID: 22434580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. C60 fullerene nanocolumns--polythiophene heterojunctions for inverted organic photovoltaic cells.
    Thomas M; Worfolk BJ; Rider DA; Taschuk MT; Buriak JM; Brett MJ
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1887-94. PubMed ID: 21524105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoimprinted polymer solar cell.
    Yang Y; Mielczarek K; Aryal M; Zakhidov A; Hu W
    ACS Nano; 2012 Apr; 6(4):2877-92. PubMed ID: 22394246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption.
    Li Y
    Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A weak donor-strong acceptor strategy to design ideal polymers for organic solar cells.
    Zhou H; Yang L; Stoneking S; You W
    ACS Appl Mater Interfaces; 2010 May; 2(5):1377-83. PubMed ID: 20438089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells.
    Leblebici SY; Chen TL; Olalde-Velasco P; Yang W; Ma B
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10105-10. PubMed ID: 24041440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coating on a cold substrate largely enhances power conversion efficiency of the bulk heterojunction solar cell.
    Oh JY; Lee TI; Myoung JM; Jeong U; Baik HK
    Macromol Rapid Commun; 2011 Jul; 32(14):1066-71. PubMed ID: 21542045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.