These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23138571)

  • 1. Ground state depletion microscopy for imaging interactions between gold nanowires and fluorophore-labeled ligands.
    Blythe KL; Mayer KM; Weber ML; Willets KA
    Phys Chem Chem Phys; 2013 Mar; 15(12):4136-45. PubMed ID: 23138571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplet-state-mediated super-resolution imaging of fluorophore-labeled gold nanorods.
    Blythe KL; Titus EJ; Willets KA
    Chemphyschem; 2014 Mar; 15(4):784-93. PubMed ID: 24254973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution imaging of interactions between molecules and plasmonic nanostructures.
    Willets KA
    Phys Chem Chem Phys; 2013 Apr; 15(15):5345-54. PubMed ID: 23321954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance-dependent emission from dye-labeled oligonucleotides on striped Au/Ag nanowires: effect of secondary structure and hybridization efficiency.
    Stoermer RL; Keating CD
    J Am Chem Soc; 2006 Oct; 128(40):13243-54. PubMed ID: 17017805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red-emitting rhodamine dyes for fluorescence microscopy and nanoscopy.
    Kolmakov K; Belov VN; Bierwagen J; Ringemann C; Müller V; Eggeling C; Hell SW
    Chemistry; 2010 Jan; 16(1):158-66. PubMed ID: 19950338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles.
    Stobiecka M; Hepel M
    Phys Chem Chem Phys; 2011 Jan; 13(3):1131-9. PubMed ID: 21072434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture.
    Goldys EM; Drozdowicz-Tomsia K; Xie F; Shtoyko T; Matveeva E; Gryczynski I; Gryczynski Z
    J Am Chem Soc; 2007 Oct; 129(40):12117-22. PubMed ID: 17850148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microsphere coupler for a nanowire waveguide plasmonic probe for molecular imaging.
    Heltzel A; Shi L; Howell JR
    Nanotechnology; 2011 Jan; 22(4):045203. PubMed ID: 21157015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire.
    Toppari JJ; Wirth J; Garwe F; Stranik O; Csaki A; Bergmann J; Paa W; Fritzsche W
    ACS Nano; 2013 Feb; 7(2):1291-8. PubMed ID: 23305550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging.
    Wang J; Moore J; Laulhe S; Nantz M; Achilefu S; Kang KA
    Nanotechnology; 2012 Mar; 23(9):095501. PubMed ID: 22327387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization-based unquenching of DNA hairpins on au surfaces: prototypical "molecular beacon" biosensors.
    Du H; Disney MD; Miller BL; Krauss TD
    J Am Chem Soc; 2003 Apr; 125(14):4012-3. PubMed ID: 12670198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of plasmonic platforms of silver wires on gold mirrors and their application to surface enhanced fluorescence.
    Shtoyko T; Raut S; Rich RM; Sronce RJ; Fudala R; Mason RN; Akopova I; Gryczynski Z; Gryczynski I
    ACS Appl Mater Interfaces; 2014; 6(21):18780-7. PubMed ID: 25296293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of DNA pinning at laser focal point on Au surface and its application to single DNA nanowire and cross-wire formation.
    Fujii S; Kobayashi K; Kanaizuka K; Okamoto T; Toyabe S; Muneyuki E; Haga MA
    Bioelectrochemistry; 2010 Nov; 80(1):26-30. PubMed ID: 20537962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement.
    Zhang L; Lang X; Hirata A; Chen M
    ACS Nano; 2011 Jun; 5(6):4407-13. PubMed ID: 21627303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami.
    Acuna GP; Bucher M; Stein IH; Steinhauer C; Kuzyk A; Holzmeister P; Schreiber R; Moroz A; Stefani FD; Liedl T; Simmel FC; Tinnefeld P
    ACS Nano; 2012 Apr; 6(4):3189-95. PubMed ID: 22439823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle energy transfer on the cell surface.
    Bene L; Szentesi G; Mátyus L; Gáspár R; Damjanovich S
    J Mol Recognit; 2005; 18(3):236-53. PubMed ID: 15593286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced photoluminescence in Au-embedded ITO nanowires.
    Kim H; Park S; Jin C; Lee C
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4677-81. PubMed ID: 22087582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles.
    Estrada LC; Roberti MJ; Simoncelli S; Levi V; Aramendía PF; Martínez OE
    J Phys Chem B; 2012 Feb; 116(7):2306-13. PubMed ID: 22235949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of semiconducting gold-DNA nanowires by application of DC bias.
    Joshi RK; West L; Kumar A; Joshi N; Alwarappan S; Kumar A
    Nanotechnology; 2010 May; 21(18):185604. PubMed ID: 20388979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer.
    Choi B; Iwanaga M; Miyazaki HT; Sugimoto Y; Ohtake A; Sakoda K
    Chem Commun (Camb); 2015 Jul; 51(57):11470-3. PubMed ID: 26088784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.