These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23139158)

  • 1. Structural basis of fluorescence quenching in caspase activatable-GFP.
    Nicholls SB; Hardy JA
    Protein Sci; 2013 Mar; 22(3):247-57. PubMed ID: 23139158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity.
    Nicholls SB; Chu J; Abbruzzese G; Tremblay KD; Hardy JA
    J Biol Chem; 2011 Jul; 286(28):24977-86. PubMed ID: 21558267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tunable, modular approach to fluorescent protease-activated reporters.
    Wu P; Nicholls SB; Hardy JA
    Biophys J; 2013 Apr; 104(7):1605-14. PubMed ID: 23561537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rough energy landscape of superfolder GFP is linked to the chromophore.
    Andrews BT; Schoenfish AR; Roy M; Waldo G; Jennings PA
    J Mol Biol; 2007 Oct; 373(2):476-90. PubMed ID: 17822714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo protein stabilization based on fragment complementation and a split GFP system.
    Lindman S; Hernandez-Garcia A; Szczepankiewicz O; Frohm B; Linse S
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19826-31. PubMed ID: 21041669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational Design of a GFP-Based Fluorogenic Caspase Reporter for Imaging Apoptosis In Vivo.
    To TL; Schepis A; Ruiz-González R; Zhang Q; Yu D; Dong Z; Coughlin SR; Shu X
    Cell Chem Biol; 2016 Jul; 23(7):875-882. PubMed ID: 27447051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations.
    Liu SS; Wei X; Dong X; Xu L; Liu J; Jiang B
    BMC Biochem; 2015 Jul; 16():17. PubMed ID: 26206151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deconstructing green fluorescent protein.
    Kent KP; Childs W; Boxer SG
    J Am Chem Soc; 2008 Jul; 130(30):9664-5. PubMed ID: 18597452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging.
    Maxwell D; Chang Q; Zhang X; Barnett EM; Piwnica-Worms D
    Bioconjug Chem; 2009 Apr; 20(4):702-9. PubMed ID: 19331388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing a Green Fluorogenic Protease Reporter by Flipping a Beta Strand of GFP for Imaging Apoptosis in Animals.
    Zhang Q; Schepis A; Huang H; Yang J; Ma W; Torra J; Zhang SQ; Yang L; Wu H; Nonell S; Dong Z; Kornberg TB; Coughlin SR; Shu X
    J Am Chem Soc; 2019 Mar; 141(11):4526-4530. PubMed ID: 30821975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GFP Loss-of-Function Mutations in Arabidopsis thaliana.
    Fu JL; Kanno T; Liang SC; Matzke AJ; Matzke M
    G3 (Bethesda); 2015 Jul; 5(9):1849-55. PubMed ID: 26153075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients.
    Sarkar M; Magliery TJ
    Mol Biosyst; 2008 Jun; 4(6):599-605. PubMed ID: 18493658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Japanese mutant Aβ (ΔE22-Aβ(1-39)) forms fibrils instantaneously, with low-thioflavin T fluorescence: seeding of wild-type Aβ(1-40) into atypical fibrils by ΔE22-Aβ(1-39).
    Cloe AL; Orgel JP; Sachleben JR; Tycko R; Meredith SC
    Biochemistry; 2011 Mar; 50(12):2026-39. PubMed ID: 21291268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding coupled with assembly in split green fluorescent proteins studied by structure-based molecular simulations.
    Ito M; Ozawa T; Takada S
    J Phys Chem B; 2013 Oct; 117(42):13212-8. PubMed ID: 23679014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of de novo chromophore maturation of fluorescent proteins.
    Iizuka R; Yamagishi-Shirasaki M; Funatsu T
    Anal Biochem; 2011 Jul; 414(2):173-8. PubMed ID: 21459075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis.
    Tawa P; Tam J; Cassady R; Nicholson DW; Xanthoudakis S
    Cell Death Differ; 2001 Jan; 8(1):30-7. PubMed ID: 11313700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis.
    Mahajan NP; Harrison-Shostak DC; Michaux J; Herman B
    Chem Biol; 1999 Jun; 6(6):401-9. PubMed ID: 10375546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular control of split-GFP reassembly by conjugation of beta-cyclodextrin and coumarin units.
    Sakamoto S; Kudo K
    J Am Chem Soc; 2008 Jul; 130(29):9574-82. PubMed ID: 18582054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromophore packing leads to hysteresis in GFP.
    Andrews BT; Roy M; Jennings PA
    J Mol Biol; 2009 Sep; 392(1):218-27. PubMed ID: 19577576
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.