These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23139167)

  • 1. Computational biology of RNA interactions.
    Dieterich C; Stadler PF
    Wiley Interdiscip Rev RNA; 2013; 4(1):107-20. PubMed ID: 23139167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of RNA libraries for in vitro selection of aptamers.
    Chushak YG; Martin JA; Chávez JL; Kelley-Loughnane N; Stone MO
    Methods Mol Biol; 2014; 1111():1-15. PubMed ID: 24549608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR spectroscopy of RNA.
    Fürtig B; Richter C; Wöhnert J; Schwalbe H
    Chembiochem; 2003 Oct; 4(10):936-62. PubMed ID: 14523911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function.
    González-Díaz H; Agüero-Chapin G; Varona J; Molina R; Delogu G; Santana L; Uriarte E; Podda G
    J Comput Chem; 2007 Apr; 28(6):1049-56. PubMed ID: 17279496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying complete RNA structural ensembles including pseudoknots.
    Gupta A; Rahman R; Li K; Gribskov M
    RNA Biol; 2012 Feb; 9(2):187-99. PubMed ID: 22418849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of microRNA-target interactions by a target structure based hybridization model.
    Long D; Chan CY; Ding Y
    Pac Symp Biocomput; 2008; ():64-74. PubMed ID: 18232104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motifs in nucleic acids: molecular mechanics restraints for base pairing and base stacking.
    Harvey SC; Wang C; Teletchea S; Lavery R
    J Comput Chem; 2003 Jan; 24(1):1-9. PubMed ID: 12483670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2004 Jul; 25(10):1295-304. PubMed ID: 15139042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based analysis of protein-RNA interactions using the program ENTANGLE.
    Allers J; Shamoo Y
    J Mol Biol; 2001 Aug; 311(1):75-86. PubMed ID: 11469858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining characteristic relations bind to RNA secondary structures.
    Chen Q; Chen YP
    IEEE Trans Inf Technol Biomed; 2010 Jan; 14(1):10-5. PubMed ID: 19783506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition of RNA: challenges for modelling interactions and plasticity.
    Fulle S; Gohlke H
    J Mol Recognit; 2010; 23(2):220-31. PubMed ID: 19941322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational prediction of RNA structural motifs involved in post-transcriptional regulatory processes.
    Rabani M; Kertesz M; Segal E
    Methods Mol Biol; 2011; 714():467-79. PubMed ID: 21431758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of nucleic acid three-dimensional structures.
    Gendron P; Lemieux S; Major F
    J Mol Biol; 2001 May; 308(5):919-36. PubMed ID: 11352582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring RNA structure by integrative molecular modelling.
    Masquida B; Beckert B; Jossinet F
    N Biotechnol; 2010 Jul; 27(3):170-83. PubMed ID: 20206310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of internal loops within the RNA secondary structure in almost quadratic time.
    Ogurtsov AY; Shabalina SA; Kondrashov AS; Roytberg MA
    Bioinformatics; 2006 Jun; 22(11):1317-24. PubMed ID: 16543280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.