These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 23139181)
1. Colloidal WO(3) nanowires as a versatile route to prepare a photoanode for solar water splitting. Gonçalves RH; Leite LD; Leite ER ChemSusChem; 2012 Dec; 5(12):2341-7. PubMed ID: 23139181 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of nanovoid Bi(2)WO(6) 2D ordered arrays as photoanodes for photoelectrochemical water splitting. Zhang L; Bahnemann D ChemSusChem; 2013 Feb; 6(2):283-90. PubMed ID: 23325719 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Wang G; Wang H; Ling Y; Tang Y; Yang X; Fitzmorris RC; Wang C; Zhang JZ; Li Y Nano Lett; 2011 Jul; 11(7):3026-33. PubMed ID: 21710974 [TBL] [Abstract][Full Text] [Related]
4. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641 [TBL] [Abstract][Full Text] [Related]
5. Template-free synthesis and characterization of mesoporous tungsten nitride nanoplates. Ko AR; Han SB; Lee YW; Park KW Phys Chem Chem Phys; 2011 Jul; 13(28):12705-7. PubMed ID: 21687866 [TBL] [Abstract][Full Text] [Related]
6. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte. Solarska R; Jurczakowski R; Augustynski J Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176 [TBL] [Abstract][Full Text] [Related]
7. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. Ling Y; Wang G; Wang H; Yang Y; Li Y ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003 [TBL] [Abstract][Full Text] [Related]
8. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination. Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929 [TBL] [Abstract][Full Text] [Related]
9. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses. Contado C; Argazzi R J Chromatogr A; 2011 Jul; 1218(27):4179-87. PubMed ID: 21168138 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst. Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494 [TBL] [Abstract][Full Text] [Related]
11. Wire-supported CdSe nanowire array photoelectrochemical solar cells. Zhang L; Shi E; Li Z; Li P; Jia Y; Ji C; Wei J; Wang K; Zhu H; Wu D; Cao A Phys Chem Chem Phys; 2012 Mar; 14(10):3583-8. PubMed ID: 22311153 [TBL] [Abstract][Full Text] [Related]
12. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R Nat Commun; 2013; 4():2195. PubMed ID: 23893238 [TBL] [Abstract][Full Text] [Related]
13. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Seabold JA; Choi KS J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661 [TBL] [Abstract][Full Text] [Related]
14. Porous tungsten oxide nanoflakes for highly alcohol sensitive performance. Xiao J; Liu P; Liang Y; Li HB; Yang GW Nanoscale; 2012 Nov; 4(22):7078-83. PubMed ID: 23069859 [TBL] [Abstract][Full Text] [Related]
15. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices. Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of ion doped WO3 photocatalysts through bulk and surface doping. Wang X; Pang L; Hu X; Han N J Environ Sci (China); 2015 Sep; 35():76-82. PubMed ID: 26354695 [TBL] [Abstract][Full Text] [Related]
17. Surface enhancement of WO3 nanowires toward the oxidation and electrochemical detection of honokiol in traditional Chinese medicine. Qu W; Xiong X; Hu W; Zhang P; Luo Q; Zhang S Colloids Surf B Biointerfaces; 2012 Dec; 100():103-6. PubMed ID: 22766287 [TBL] [Abstract][Full Text] [Related]
18. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Wang X; Peng KQ; Pan XJ; Chen X; Yang Y; Li L; Meng XM; Zhang WJ; Lee ST Angew Chem Int Ed Engl; 2011 Oct; 50(42):9861-5. PubMed ID: 21905189 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications. Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties. Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]