BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23139420)

  • 1. Integrated redox sensor and effector functions for tetrahydrobiopterin- and glutathionylation-dependent endothelial nitric-oxide synthase uncoupling.
    Crabtree MJ; Brixey R; Batchelor H; Hale AB; Channon KM
    J Biol Chem; 2013 Jan; 288(1):561-9. PubMed ID: 23139420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression.
    Crabtree MJ; Tatham AL; Al-Wakeel Y; Warrick N; Hale AB; Cai S; Channon KM; Alp NJ
    J Biol Chem; 2009 Jan; 284(2):1136-44. PubMed ID: 19011239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways.
    Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM
    J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization.
    Benson MA; Batchelor H; Chuaiphichai S; Bailey J; Zhu H; Stuehr DJ; Bhattacharya S; Channon KM; Crabtree MJ
    J Biol Chem; 2013 Oct; 288(41):29836-45. PubMed ID: 23965989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell type-specific recycling of tetrahydrobiopterin by dihydrofolate reductase explains differential effects of 7,8-dihydrobiopterin on endothelial nitric oxide synthase uncoupling.
    Schmidt K; Kolesnik B; Gorren AC; Werner ER; Mayer B
    Biochem Pharmacol; 2014 Aug; 90(3):246-53. PubMed ID: 24863258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation.
    De Pascali F; Hemann C; Samons K; Chen CA; Zweier JL
    Biochemistry; 2014 Jun; 53(22):3679-88. PubMed ID: 24758136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrahydrobiopterin recycling, a key determinant of endothelial nitric-oxide synthase-dependent signaling pathways in cultured vascular endothelial cells.
    Sugiyama T; Levy BD; Michel T
    J Biol Chem; 2009 May; 284(19):12691-700. PubMed ID: 19286667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncoupling of endothelial nitric oxide synthase in cerebral vasculature of Tg2576 mice.
    Santhanam AV; d'Uscio LV; He T; Das P; Younkin SG; Katusic ZS
    J Neurochem; 2015 Sep; 134(6):1129-38. PubMed ID: 26111938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression.
    Bendall JK; Alp NJ; Warrick N; Cai S; Adlam D; Rockett K; Yokoyama M; Kawashima S; Channon KM
    Circ Res; 2005 Oct; 97(9):864-71. PubMed ID: 16179591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial Nitric Oxide Synthase-Derived Nitric Oxide Prevents Dihydrofolate Reductase Degradation via Promoting S-Nitrosylation.
    Cai Z; Lu Q; Ding Y; Wang Q; Xiao L; Song P; Zou MH
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2366-73. PubMed ID: 26381869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydrofolate reductase protects endothelial nitric oxide synthase from uncoupling in tetrahydrobiopterin deficiency.
    Crabtree MJ; Hale AB; Channon KM
    Free Radic Biol Med; 2011 Jun; 50(11):1639-46. PubMed ID: 21402147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification.
    Chen CA; De Pascali F; Basye A; Hemann C; Zweier JL
    Biochemistry; 2013 Sep; 52(38):6712-23. PubMed ID: 23977830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.
    Wu F; Szczepaniak WS; Shiva S; Liu H; Wang Y; Wang L; Wang Y; Kelley EE; Chen AF; Gladwin MT; McVerry BJ
    Am J Physiol Lung Cell Mol Physiol; 2014 Dec; 307(12):L987-97. PubMed ID: 25326583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling.
    Antoniades C; Shirodaria C; Warrick N; Cai S; de Bono J; Lee J; Leeson P; Neubauer S; Ratnatunga C; Pillai R; Refsum H; Channon KM
    Circulation; 2006 Sep; 114(11):1193-201. PubMed ID: 16940192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction.
    Galougahi KK; Liu CC; Gentile C; Kok C; Nunez A; Garcia A; Fry NA; Davies MJ; Hawkins CL; Rasmussen HH; Figtree GA
    J Am Heart Assoc; 2014 Apr; 3(2):e000731. PubMed ID: 24755153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythropoietin increases bioavailability of tetrahydrobiopterin and protects cerebral microvasculature against oxidative stress induced by eNOS uncoupling.
    Santhanam AV; d'Uscio LV; Katusic ZS
    J Neurochem; 2014 Nov; 131(4):521-9. PubMed ID: 25041251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial effects of exogenous tetrahydrobiopterin on left ventricular remodeling after myocardial infarction in rats: the possible role of oxidative stress caused by uncoupled endothelial nitric oxide synthase.
    Masano T; Kawashima S; Toh R; Satomi-Kobayashi S; Shinohara M; Takaya T; Sasaki N; Takeda M; Tawa H; Yamashita T; Yokoyama M; Hirata K
    Circ J; 2008 Sep; 72(9):1512-9. PubMed ID: 18724032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance.
    Bailey J; Shaw A; Fischer R; Ryan BJ; Kessler BM; McCullagh J; Wade-Martins R; Channon KM; Crabtree MJ
    Free Radic Biol Med; 2017 Mar; 104():214-225. PubMed ID: 28104455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice.
    Chuaiphichai S; Crabtree MJ; Mcneill E; Hale AB; Trelfa L; Channon KM; Douglas G
    Br J Pharmacol; 2017 Apr; 174(8):657-671. PubMed ID: 28128438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells.
    Cai S; Khoo J; Channon KM
    Cardiovasc Res; 2005 Mar; 65(4):823-31. PubMed ID: 15721862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.