These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23139874)

  • 1. Diversifying and correlational selection on behavior toward conspecific and heterospecific competitors in brook stickleback (Culaea inconstans).
    Peiman KS; Robinson BW
    Ecol Evol; 2012 Sep; 2(9):2141-54. PubMed ID: 23139874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterospecific aggression and adaptive divergence in brook stickleback (Culaea inconstans).
    Peiman KS; Robinson BW
    Evolution; 2007 Jun; 61(6):1327-38. PubMed ID: 17542843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing alternative explanations of character shifts against ecological character displacement in brook sticklebacks (Culaea inconstans) that coexist with ninespine sticklebacks (Pungitius pungitius).
    Gray SM; Robinson BW; Parsons KJ
    Oecologia; 2005 Nov; 146(1):25-35. PubMed ID: 16151862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric interspecific competition drives shifts in signalling traits in fan-throated lizards.
    Zambre AM; Khandekar A; Sanap R; O'Brien C; Snell-Rood EC; Thaker M
    Proc Biol Sci; 2020 Dec; 287(1940):20202141. PubMed ID: 33290678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Watershed characteristics shape the landscape genetics of brook stickleback (
    Kremer CS; Vamosi SM; Rogers SM
    Ecol Evol; 2017 May; 7(9):3067-3079. PubMed ID: 28480006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and interspecific avoidance of areas marked with skin extract from brook sticklebacks (Culaea inconstans) in a natural habitat.
    Chivers DP; Smith RJ
    J Chem Ecol; 1994 Jul; 20(7):1517-24. PubMed ID: 24242648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk-sensitive habitat use by brook stickleback (Culaea inconstans) in areas associated with minnow alarm pheromone.
    Wisenden BD; Chivers DP; Smith RJ
    J Chem Ecol; 1994 Nov; 20(11):2975-83. PubMed ID: 24241929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomarker responses to estrogen and androgen exposure in the brook stickleback (Culaea inconstans): A new bioindicator species for endocrine disrupting compounds.
    Muldoon BM; Hogan NS
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Feb; 180():1-10. PubMed ID: 26545489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae).
    Ross JA; Urton JR; Boland J; Shapiro MD; Peichel CL
    PLoS Genet; 2009 Feb; 5(2):e1000391. PubMed ID: 19229325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Proteocephalus species-aggregate (Cestoda) in sticklebacks (Gasterosteidae) of the Nearctic Region, including description of a new species from brook stickleback, Culaea inconstans.
    Scholz T; Choudhury A; Nelson PA
    Folia Parasitol (Praha); 2020 Aug; 67():. PubMed ID: 32866947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.
    Kitano J; Mori S
    Genes Genet Syst; 2016 Oct; 91(2):77-84. PubMed ID: 27301281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Male-driven reproductive and agonistic character displacement in darters and its implications for speciation in allopatry.
    Moran RL; Fuller RC
    Curr Zool; 2018 Feb; 64(1):101-113. PubMed ID: 29492043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agonistic character displacement in social cognition of advertisement signals.
    Pasch B; Sanford R; Phelps SM
    Anim Cogn; 2017 Mar; 20(2):267-273. PubMed ID: 27757700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agonistic character displacement of genetically based male colour patterns across darters.
    Moran RL; Fuller RC
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30068684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of heterospecific and conspecific competition on inter-individual differences in tungara frog tadpole (
    Beyts C; Cella M; Colegrave N; Downie R; Martin JGA; Walsh P
    Behav Ecol; 2023; 34(2):210-222. PubMed ID: 36998994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. REINFORCEMENT OF STICKLEBACK MATE PREFERENCES: SYMPATRY BREEDS CONTEMPT.
    Rundle HD; Schluter D
    Evolution; 1998 Feb; 52(1):200-208. PubMed ID: 28568163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproductive character displacement generates reproductive isolation among conspecific populations: an artificial neural network study.
    Pfennig KS; Ryan MJ
    Proc Biol Sci; 2006 Jun; 273(1592):1361-8. PubMed ID: 16777724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Mixing between Calling Males of Two Closely Related, Sympatric Crickets Suggests Beneficial Heterospecific Interactions in a NonAdaptive Radiation.
    Xu M; Shaw KL
    J Hered; 2020 Feb; 111(1):84-91. PubMed ID: 31782960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genomic signature of ecological divergence along the benthic-limnetic axis in allopatric and sympatric threespine stickleback.
    Härer A; Bolnick DI; Rennison DJ
    Mol Ecol; 2021 Jan; 30(2):451-463. PubMed ID: 33222348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.