These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 23140320)
1. Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study. Rahmanpour A; Ghahremanpour MM; Mehrnejad F; Moghaddam ME J Biomol Struct Dyn; 2013 Dec; 31(12):1393-403. PubMed ID: 23140320 [TBL] [Abstract][Full Text] [Related]
2. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. Balatti GE; Martini MF; Pickholz M J Mol Model; 2018 Jul; 24(8):208. PubMed ID: 30019106 [TBL] [Abstract][Full Text] [Related]
3. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
4. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
5. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Velasco-Bolom JL; Corzo G; Garduño-Juárez R J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248 [TBL] [Abstract][Full Text] [Related]
7. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. Tolokh IS; Vivcharuk V; Tomberli B; Gray CG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031911. PubMed ID: 19905150 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics studies of the antimicrobial peptides piscidin 1 and its mutants with a DOPC lipid bilayer. Yuan T; Zhang X; Hu Z; Wang F; Lei M Biopolymers; 2012 Dec; 97(12):998-1009. PubMed ID: 22987590 [TBL] [Abstract][Full Text] [Related]
9. Simulations of Membrane-Disrupting Peptides II: AMP Piscidin 1 Favors Surface Defects over Pores. Perrin BS; Fu R; Cotten ML; Pastor RW Biophys J; 2016 Sep; 111(6):1258-1266. PubMed ID: 27653484 [TBL] [Abstract][Full Text] [Related]
10. The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length. Perrin BS; Sodt AJ; Cotten ML; Pastor RW J Membr Biol; 2015 Jun; 248(3):455-67. PubMed ID: 25292264 [TBL] [Abstract][Full Text] [Related]
12. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulation study of the interaction of Piscidin 1 with DPPC bilayers: structure-activity relationship. Mehrnejad F; Zarei M J Biomol Struct Dyn; 2010 Feb; 27(4):551-60. PubMed ID: 19916575 [TBL] [Abstract][Full Text] [Related]
14. Molecular Dynamics Simulations of Human Antimicrobial Peptide LL-37 in Model POPC and POPG Lipid Bilayers. Zhao L; Cao Z; Bian Y; Hu G; Wang J; Zhou Y Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29652823 [TBL] [Abstract][Full Text] [Related]
15. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Mukherjee S; Kar RK; Nanga RPR; Mroue KH; Ramamoorthy A; Bhunia A Phys Chem Chem Phys; 2017 Jul; 19(29):19289-19299. PubMed ID: 28702543 [TBL] [Abstract][Full Text] [Related]
16. Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence. Islami M; Mehrnejad F; Doustdar F; Alimohammadi M; Khadem-Maaref M; Mir-Derikvand M; Taghdir M Chem Biol Drug Des; 2014 Aug; 84(2):242-52. PubMed ID: 24581146 [TBL] [Abstract][Full Text] [Related]
17. The effect of the length and flexibility of the side chain of basic amino acids on the binding of antimicrobial peptides to zwitterionic and anionic membrane model systems. Russell AL; Williams BC; Spuches A; Klapper D; Srouji AH; Hicks RP Bioorg Med Chem; 2012 Mar; 20(5):1723-39. PubMed ID: 22304850 [TBL] [Abstract][Full Text] [Related]
18. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy. Mani R; Waring AJ; Hong M Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158 [TBL] [Abstract][Full Text] [Related]
19. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Mani R; Cady SD; Tang M; Waring AJ; Lehrer RI; Hong M Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16242-7. PubMed ID: 17060626 [TBL] [Abstract][Full Text] [Related]
20. Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers. Wang Y; Schlamadinger DE; Kim JE; McCammon JA Biochim Biophys Acta; 2012 May; 1818(5):1402-9. PubMed ID: 22387432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]