These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 23140399)

  • 1. A Raman scattering study of the interactions of DNA with its water of hydration.
    Lee SA; Tao NJ; Rupprecht A
    J Biomol Struct Dyn; 2013; 31(11):1337-42. PubMed ID: 23140399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of DNA hydration shells studied by Raman spectroscopy.
    Tao NJ; Lindsay SM; Rupprecht A
    Biopolymers; 1989 May; 28(5):1019-30. PubMed ID: 2742983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions.
    Ahmed M; Namboodiri V; Singh AK; Mondal JA
    J Chem Phys; 2014 Oct; 141(16):164708. PubMed ID: 25362333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational spectroscopy of microhydrated conjugate base anions.
    Asmis KR; Neumark DM
    Acc Chem Res; 2012 Jan; 45(1):43-52. PubMed ID: 21675714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast memory loss and relaxation processes in hydrogen-bonded systems.
    Elsaesser T
    Biol Chem; 2009 Nov; 390(11):1125-32. PubMed ID: 19663683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast energy exchange via water-phosphate interactions in hydrated DNA.
    Szyc Ł; Yang M; Elsaesser T
    J Phys Chem B; 2010 Jun; 114(23):7951-7. PubMed ID: 20481569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of hydration of the nucleic acid fragments.
    Teplukhin AV; Poltev VI; Shulyupina NV; Malenkov GG
    J Biomol Struct Dyn; 1989 Aug; 7(1):75-99. PubMed ID: 2818872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy study for the systems (LiCl-H
    Ge H; Zhao Y; Yang H; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120543. PubMed ID: 34749260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Characteristic of vibration spectra for hydration state of herring sperm DNA fibers].
    Yu D; Ke W
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun; 18(3):303-6. PubMed ID: 15810272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A first principles theoretical study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous ionic solutions: D2O in hydration shells of Cl(-) ions.
    Mallik BS; Semparithi A; Chandra A
    J Chem Phys; 2008 Nov; 129(19):194512. PubMed ID: 19026071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration of lysozyme studied by Raman spectroscopy.
    Kocherbitov V; Latynis J; Misiunas A; Barauskas J; Niaura G
    J Phys Chem B; 2013 May; 117(17):4981-92. PubMed ID: 23557185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond coherent anti-Stokes Raman scattering spectroscopy of hydrogen bonded structure in water and aqueous solutions.
    Zhu H; Li Y; Vdović S; Long S; He G; Guo Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():262-73. PubMed ID: 26142659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy.
    Paolantoni M; Sassi P; Morresi A; Santini S
    J Chem Phys; 2007 Jul; 127(2):024504. PubMed ID: 17640134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the chemistries of the substrate and flavin ring system of p-hydroxybenzoate hydroxylase by raman difference spectroscopy.
    Clarkson J; Palfey BA; Carey PR
    Biochemistry; 1997 Oct; 36(41):12560-6. PubMed ID: 9376361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen-bonding and vibrational coupling of water in a hydrophobic hydration shell as observed by Raman-MCR and isotopic dilution spectroscopy.
    Ahmed M; Singh AK; Mondal JA
    Phys Chem Chem Phys; 2016 Jan; 18(4):2767-75. PubMed ID: 26725484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au).
    Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ
    J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic hydration shell behavior of glycine.
    D'Amico F; Bencivenga F; Camisasca G; Gessini A; Principi E; Cucini R; Masciovecchio C
    J Chem Phys; 2013 Jul; 139(1):015101. PubMed ID: 23822323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Born-Oppenheimer molecular dynamics of the hydration of Na+ in a water cluster.
    Galamba N; Costa Cabral BJ
    J Phys Chem B; 2009 Dec; 113(50):16151-8. PubMed ID: 19928865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nature of the superoxide radical anion in water.
    Janik I; Tripathi GN
    J Chem Phys; 2013 Jul; 139(1):014302. PubMed ID: 23822298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.