These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. Yuan Z BMC Bioinformatics; 2005 Oct; 6():248. PubMed ID: 16221309 [TBL] [Abstract][Full Text] [Related]
24. Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14. Zheng W; Li Y; Zhang C; Zhou X; Pearce R; Bell EW; Huang X; Zhang Y Proteins; 2021 Dec; 89(12):1734-1751. PubMed ID: 34331351 [TBL] [Abstract][Full Text] [Related]
26. Protein fold recognition by prediction-based threading. Rost B; Schneider R; Sander C J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912 [TBL] [Abstract][Full Text] [Related]
27. Improving consensus contact prediction via server correlation reduction. Gao X; Bu D; Xu J; Li M BMC Struct Biol; 2009 May; 9():28. PubMed ID: 19419562 [TBL] [Abstract][Full Text] [Related]
28. Contact prediction for beta and alpha-beta proteins using integer linear optimization and its impact on the first principles 3D structure prediction method ASTRO-FOLD. Rajgaria R; Wei Y; Floudas CA Proteins; 2010 Jun; 78(8):1825-46. PubMed ID: 20225257 [TBL] [Abstract][Full Text] [Related]
29. EigenTHREADER: analogous protein fold recognition by efficient contact map threading. Buchan DWA; Jones DT Bioinformatics; 2017 Sep; 33(17):2684-2690. PubMed ID: 28419258 [TBL] [Abstract][Full Text] [Related]
30. A large-scale comparative assessment of methods for residue-residue contact prediction. Wuyun Q; Zheng W; Peng Z; Yang J Brief Bioinform; 2018 Mar; 19(2):219-230. PubMed ID: 27802931 [TBL] [Abstract][Full Text] [Related]
31. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts. Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795 [TBL] [Abstract][Full Text] [Related]
32. Protein contacts, inter-residue interactions and side-chain modelling. Faure G; Bornot A; de Brevern AG Biochimie; 2008 Apr; 90(4):626-39. PubMed ID: 18086572 [TBL] [Abstract][Full Text] [Related]
33. A two-stage approach for improved prediction of residue contact maps. Vullo A; Walsh I; Pollastri G BMC Bioinformatics; 2006 Mar; 7():180. PubMed ID: 16573808 [TBL] [Abstract][Full Text] [Related]
34. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure. Ji S; Oruç T; Mead L; Rehman MF; Thomas CM; Butterworth S; Winn PJ PLoS One; 2019; 14(1):e0205214. PubMed ID: 30620738 [TBL] [Abstract][Full Text] [Related]
35. De novo structure prediction of globular proteins aided by sequence variation-derived contacts. Kosciolek T; Jones DT PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808 [TBL] [Abstract][Full Text] [Related]
36. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. Walsh I; Baù D; Martin AJ; Mooney C; Vullo A; Pollastri G BMC Struct Biol; 2009 Jan; 9():5. PubMed ID: 19183478 [TBL] [Abstract][Full Text] [Related]
37. Improved residue contact prediction using support vector machines and a large feature set. Cheng J; Baldi P BMC Bioinformatics; 2007 Apr; 8():113. PubMed ID: 17407573 [TBL] [Abstract][Full Text] [Related]