These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23141345)

  • 1. Quantitative structure-retention relationships of azole antifungal agents in reversed-phase high performance liquid chromatography.
    Golubović J; Protić A; Zečević M; Otašević B; Mikić M; Živanović L
    Talanta; 2012 Oct; 100():329-37. PubMed ID: 23141345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography.
    Aschi M; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2007 Jan; 582(2):235-42. PubMed ID: 17386498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors.
    D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2008 Nov; 628(2):162-72. PubMed ID: 18929004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of retention behaviour of non-steroidal anti-inflammatory drugs in high-performance liquid chromatography by using quantitative structure-retention relationships.
    Carlucci G; D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2007 Oct; 601(1):68-76. PubMed ID: 17904471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemometrical tools in the study of the retention behavior of azole antifungals.
    Vemić A; Malenović A; Rakić T; Kostić N; Jančić Stojanović B
    J Chromatogr Sci; 2014 Feb; 52(2):95-102. PubMed ID: 23295779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of the effect of solute structure and mobile phase pH and composition on the retention of phenoxy acid herbicides in reversed-phase high-performance liquid chromatography.
    Aschi M; D'Archivio AA; Mazzeo P; Pierabella M; Ruggieri F
    Anal Chim Acta; 2008 Jun; 616(2):123-37. PubMed ID: 18482595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure -retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases.
    Maljurić N; Golubović J; Otašević B; Zečević M; Protić A
    Anal Bioanal Chem; 2018 Apr; 410(10):2533-2550. PubMed ID: 29442144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatographic behaviour of ionic liquid cations in view of quantitative structure-retention relationship.
    Molíková M; Markuszewski MJ; Kaliszan R; Jandera P
    J Chromatogr A; 2010 Feb; 1217(8):1305-12. PubMed ID: 20060528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.
    D'Archivio AA; Maggi MA; Ruggieri F
    J Sep Sci; 2014 Aug; 37(15):1930-6. PubMed ID: 24830601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSRR models for potential local anaesthetic drugs using high performance liquid chromatography.
    Durcekova T; Boronova K; Mocak J; Lehotay J; Cizmarik J
    J Pharm Biomed Anal; 2012 Feb; 59():209-16. PubMed ID: 22033336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.
    Flieger J
    J Chromatogr A; 2010 Jan; 1217(4):540-9. PubMed ID: 19969302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of the azoles voriconazole, posaconazole, isavuconazole, itraconazole and its metabolite hydroxy-itraconazole in human plasma by reversed phase ultra-performance liquid chromatography with ultraviolet detection.
    Wissen CP; Burger DM; Verweij PE; Aarnoutse RE; Brüggemann RJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Mar; 887-888():79-84. PubMed ID: 22336695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: a comparison between curvilinear and artificial neural network regression.
    D'Archivio AA; Maggi MA; Ruggieri F
    Anal Chim Acta; 2011 Mar; 690(1):35-46. PubMed ID: 21414434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of retention data from affinity and reverse-phase high-performance liquid chromatography on antitumor activity prediction of imidazoacridinones using QSAR strategy.
    Koba M; Bączek T; Marszałł MP
    J Pharm Biomed Anal; 2012 May; 64-65():87-93. PubMed ID: 22417615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Models and QSRR in Retention Modeling of Eight Aminopyridines.
    Tumpa A; Kalinić M; Jovanović P; Erić S; Rakić T; Jančić-Stojanović B; Medenica M
    J Chromatogr Sci; 2016 Mar; 54(3):436-44. PubMed ID: 26590237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial neural networks in analysis of indinavir and its degradation products retention.
    Jancić-Stojanović B; Ivanović D; Malenović A; Medenica M
    Talanta; 2009 Apr; 78(1):107-12. PubMed ID: 19174211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategy for reduced calibration sets to develop quantitative structure-retention relationships in high-performance liquid chromatography.
    Andries JP; Claessens HA; Heyden YV; Buydens LM
    Anal Chim Acta; 2009 Oct; 652(1-2):180-8. PubMed ID: 19786179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.