These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

693 related articles for article (PubMed ID: 23141540)

  • 1. Senataxin associates with replication forks to protect fork integrity across RNA-polymerase-II-transcribed genes.
    Alzu A; Bermejo R; Begnis M; Lucca C; Piccini D; Carotenuto W; Saponaro M; Brambati A; Cocito A; Foiani M; Liberi G
    Cell; 2012 Nov; 151(4):835-846. PubMed ID: 23141540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dormant origins and fork protection mechanisms rescue sister forks arrested by transcription.
    Brambati A; Zardoni L; Achar YJ; Piccini D; Galanti L; Colosio A; Foiani M; Liberi G
    Nucleic Acids Res; 2018 Feb; 46(3):1227-1239. PubMed ID: 29059325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability.
    Appanah R; Lones EC; Aiello U; Libri D; De Piccoli G
    Cell Rep; 2020 Feb; 30(7):2094-2105.e9. PubMed ID: 32075754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions.
    Zardoni L; Nardini E; Brambati A; Lucca C; Choudhary R; Loperfido F; Sabbioneda S; Liberi G
    Nucleic Acids Res; 2021 Dec; 49(22):12769-12784. PubMed ID: 34878142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sen1 and Rrm3 ensure permissive topological conditions for replication termination.
    Choudhary R; Niska-Blakie J; Adhil M; Liberi G; Achar YJ; Giannattasio M; Foiani M
    Cell Rep; 2023 Jul; 42(7):112747. PubMed ID: 37405920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae.
    Finkel JS; Chinchilla K; Ursic D; Culbertson MR
    Genetics; 2010 Jan; 184(1):107-18. PubMed ID: 19884310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair.
    Li W; Selvam K; Rahman SA; Li S
    Nucleic Acids Res; 2016 Aug; 44(14):6794-802. PubMed ID: 27179024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccharomyces cerevisiae Sen1 as a model for the study of mutations in human Senataxin that elicit cerebellar ataxia.
    Chen X; Müller U; Sundling KE; Brow DA
    Genetics; 2014 Oct; 198(2):577-90. PubMed ID: 25116135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Senataxin, defective in the neurodegenerative disorder ataxia with oculomotor apraxia 2, lies at the interface of transcription and the DNA damage response.
    Yüce Ö; West SC
    Mol Cell Biol; 2013 Jan; 33(2):406-17. PubMed ID: 23149945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
    Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS
    FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sen1 is a key regulator of transcription-driven conflicts.
    Aiello U; Challal D; Wentzinger G; Lengronne A; Appanah R; Pasero P; Palancade B; Libri D
    Mol Cell; 2022 Aug; 82(16):2952-2966.e6. PubMed ID: 35839782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization of the helicase Sen1 provides new insights into the mechanisms of non-coding transcription termination.
    Han Z; Libri D; Porrua O
    Nucleic Acids Res; 2017 Feb; 45(3):1355-1370. PubMed ID: 28180347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae.
    Azvolinsky A; Giresi PG; Lieb JD; Zakian VA
    Mol Cell; 2009 Jun; 34(6):722-34. PubMed ID: 19560424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Senataxin homologue Sen1 is required for efficient termination of RNA polymerase III transcription.
    Rivosecchi J; Larochelle M; Teste C; Grenier F; Malapert A; Ricci EP; Bernard P; Bachand F; Vanoosthuyse V
    EMBO J; 2019 Aug; 38(16):e101955. PubMed ID: 31294478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule characterization of extrinsic transcription termination by Sen1 helicase.
    Wang S; Han Z; Libri D; Porrua O; Strick TR
    Nat Commun; 2019 Apr; 10(1):1545. PubMed ID: 30948716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1.
    Han Z; Jasnovidova O; Haidara N; Tudek A; Kubicek K; Libri D; Stefl R; Porrua O
    EMBO J; 2020 Apr; 39(7):e101548. PubMed ID: 32107786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA Polymerase II Transcription Attenuation at the Yeast DNA Repair Gene,
    Whalen C; Tuohy C; Tallo T; Kaufman JW; Moore C; Kuehner JN
    G3 (Bethesda); 2018 May; 8(6):2043-2058. PubMed ID: 29686108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic competition between RNA Polymerase II and Sen1-dependent transcription termination.
    Hazelbaker DZ; Marquardt S; Wlotzka W; Buratowski S
    Mol Cell; 2013 Jan; 49(1):55-66. PubMed ID: 23177741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes.
    Legros P; Malapert A; Niinuma S; Bernard P; Vanoosthuyse V
    PLoS Genet; 2014 Nov; 10(11):e1004794. PubMed ID: 25392932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae.
    Chinchilla K; Rodriguez-Molina JB; Ursic D; Finkel JS; Ansari AZ; Culbertson MR
    Eukaryot Cell; 2012 Apr; 11(4):417-29. PubMed ID: 22286094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.