These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23141667)

  • 1. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach.
    Du Y; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):588-94. PubMed ID: 23141667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of an angular spectrum approach for pulsed ultrasound fields.
    Du Y; Jensen H; Jensen JA
    Ultrasonics; 2013 Aug; 53(6):1185-91. PubMed ID: 23561393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework for simulating ultrasound imaging based on first order nonlinear pressure-velocity relations.
    Du Y; Fan R; Li Y; Chen S; Jensen JA
    Ultrasonics; 2016 Jul; 69():152-65. PubMed ID: 27107165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of time-domain solutions for the full-wave equation and the parabolic wave equation for a diagnostic ultrasound transducer.
    Pinton GF; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):730-3. PubMed ID: 18407863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).
    Wang M; Zhou Y
    Int J Hyperthermia; 2016 Aug; 32(5):569-82. PubMed ID: 27145871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast simulation of second harmonic ultrasound field using a quasi-linear method.
    Prieur F; Johansen TF; Holm S; Torp H
    J Acoust Soc Am; 2012 Jun; 131(6):4365-75. PubMed ID: 22712911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave envelopes method for description of nonlinear acoustic wave propagation.
    Wójcik J; Nowicki A; Lewin PA; Bloomfield PE; Kujawska T; Filipczyński L
    Ultrasonics; 2006 Jul; 44(3):310-29. PubMed ID: 16780911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation.
    Doinikov AA; Novell A; Calmon P; Bouakaz A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1470-7. PubMed ID: 25167147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundamental and second-harmonic ultrasound field computation of inhomogeneous nonlinear medium with a generalized angular spectrum method.
    Varray F; Ramalli A; Cachard C; Tortoli P; Basset O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1366-76. PubMed ID: 21768021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the synthesis of sample volumes for real-time spectral Doppler ultrasound simulation.
    Aguilar LA; Steinman DA; Cobbold RS
    Ultrasound Med Biol; 2010 Dec; 36(12):2107-16. PubMed ID: 20950935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of the origin of differences between measured and simulated fields produced by a 15-element ultrasound phased array.
    Aitkenhead AH; Mills JA; Wilson AJ
    Ultrasound Med Biol; 2010 Mar; 36(3):410-8. PubMed ID: 20133041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verification of the Westervelt equation for focused transducers.
    Jing Y; Shen D; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):1097-101. PubMed ID: 21622065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ̀Spatial impulse response of a rectangular double curved transducer.
    Bæk DB; Jensen JA; Willatzen M
    J Acoust Soc Am; 2012 Apr; 131(4):2730-41. PubMed ID: 22501052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design.
    Li Z; Chi C
    Ultrasonics; 2018 Mar; 84():63-73. PubMed ID: 29078097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parametric study of ultrasonic beam profiles for a linear phased array transducer.
    Lee JH; Choi SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):644-50. PubMed ID: 18238592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-window angular spectrum method for diffraction propagation in far and near field.
    Yu X; Xiahui T; Xiong QY; Hao P; Wei W
    Opt Lett; 2012 Dec; 37(23):4943-5. PubMed ID: 23202098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.
    Matte GM; Van Neer PL; Danilouchkine MG; Huijssen J; Verweij MD; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):533-46. PubMed ID: 21429845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.